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A useful way to think of social networks, in particular communication networks, is as a sys-
tem of actors and the relationships among them.  The mathematical theory of graphs, by 
providing a formal representation of relationships between actors, equips the communication 
scientist with powerful models of social networks. 
 This note explores a class of graphs that mimic tightly knit, but diverse factions in com-
munication networks.  The graphs involved are rooted in psychological theories of preference 
and indifference, but the results derived, though in the tradition of Luce (1956) and Roberts 
(1969, 1970), will be of more interest to communication scientists than to psychologists. 
 The structure of this note is as follows: First some basic definitions from graph theory are 
presented.  Then, indifference graphs are introduced, and, by requiring transitivity, an equiva-
lence relation is imposed on the actors.  A characterization theorem is then proven, followed 
by a theorem and its corollaries that describe the communication structure of the resulting 
social networks. 
 
Basic Definitions 
By a relation R on a set A, we mean a subset of A × A.  If (x,y) ∈ R, we write xRy and say x is 
R-related to y (dropping the prefix if the relation is understood).  The relation R is reflexive if 
xRx for every x ∈ A, and it is symmetric if xRy implies yRx.  R is transitive if xRy and yRz 
taken together imply xRz.  If R is reflexive, symmetric, and transitive it is called an equiva-
lence relation.  Let R be an equivalence relation on A, and consider a nonempty subset B ⊆  A 
along with some element x ∈ B.  Then B is called an equivalence class if it consists of all the 
elements of A that are R-related to x.      
 The ordered pair G = (V, R) is a graph if V is a finite, nonempty set, and R is a reflexive, 
symmetric relation on V.  The elements of V are called vertices and the elements of R are 
called edges.  If xRy, then x and y are said to be adjacent.  The neighborhood of a vertex is 
the set of all vertices to which it is adjacent.  We say the graph H = (W, S) is a subgraph of 
G = (V, R), and we write H ⊆  G, if W ⊆  V and S ⊆  R.  If S is a proper subset of R, or if W is 
a proper subset of V, we then we say that H is a proper subgraph of G.  It is an induced sub-
graph if whenever two vertices of W are R-related they are also S-related. 
 Two vertices are structurally equivalent if their neighborhoods are identical (cf. Lorrain 
& White, 1971).  Because structurally equivalent vertices cannot be distinguished from each 
other on the basis of their links to other vertices (because structurally equivalent vertices are 
adjacent to exactly the same vertices), it is sometimes convenient to “collapse” them into a 
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single vertex.  More formally, given a graph G = (V, R), the reduced graph of G, denoted G*, 
is the graph that results when one takes the (structural) equivalence classes of V as the verti-
ces of G* and one considers two equivalence classes to be adjacent in G*  if and only if their 
members are adjacent in G. 
 A path (of length n) from vertex x0 to vertex xn is an ordered sequence of distinct vertices 
P = {x0, x1, . . . , xn} with each vertex in the sequence being adjacent to the vertex following 
it.  P is a geodesic if it is a shortest such path, i.e. if there is no other path from x0 to xn of 
length less than n.  The distance between a pair of vertices is taken to be the length of the ge-
odesic between them.  The graph G = (V, R) is connected if for every pair of vertices x and y 
there is a path from x to y.  The diameter of a connected graph is the length of its longest ge-
odesic, and a graph of unit diameter is called complete.  A connected subgraph of G is a com-
ponent if it is maximal connected, i.e. if there is no other subgraph J ⊆  G properly containing 
H.  The vertices in a component are all connected by paths, whereas there are no paths what-
soever between vertices of different components. Components thus represent closed subsys-
tems. 
 Suppose for a subgraph H ⊆  G we discover that every pair of vertices in H are separated 
by a distance (in G) of no more than n.  If H is a maximal such subgraph it is called an n-
clique (cf. Luce, 1950).  A connected n-clique of diameter n is called, following Alba (1973), 
a  sociometric clique (of diameter n).  Suppose H and J are two sociometric cliques with the 
same diameter belonging to G.  It is possible some vertices belong to more than one socio-
metric clique, and thus H and J may share members.  If they do not, i.e. if their vertex sets 
have empty intersection, then H and J are separated.   A vertex of H adjacent to a vertex of J, 
but not belonging to J is called a bridge, whereas vertex of G, adjacent to at least one vertex 
of H and at least one vertex of J, but belonging to neither, is called a liaison.  Finally, a vertex 
x of the graph G = (V, R) is an extreme point if xRy and xRz together imply yRz and the exist-
ence of some distinct point w ∈ V such that wRy and wRz, but not wRx. 
 
The Structure of Transitive Indifference Graphs 
Following Roberts (1969, 1970), we have: 
 
Definition.  A graph G = (V, R) is an indifference graph if, for every connected, induced sub-
graph H ⊆  G, the reduced graph H* has only one vertex, or exactly two extreme points. □ 
 
 Recall that the vertices of H* are equivalence classes.  Thus if there is but a single vertex 
in H* then the vertices of H are all structurally equivalent to each other.  Alternatively, if 
there are exactly two extreme points in H*, then the vertices of H can be ordered in the rela-
tion R so that there is a “largest” vertex and a “smallest” vertex. 
 Indifference graphs generate interest from a psychological viewpoint because V can be 
thought of as a set of alternatives on which the relation R specifies indifference.  To the 
communication theorist, indifference graphs represent relationships between the members of 
certain types of social systems.  For example, if we measure some attribute on individuals 
and postulate that the individuals will form communication ties if their attributes are suffi-
ciently similar, the resulting mathematical representation will be an indifference graph.  One 
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can see this by means of a result deduced by Roberts (1969), namely that one can define a 
real-valued function on the vertices such that two vertices are adjacent if and only if their 
function values are within some arbitrary positive constant (typically scaled to be 1, for con-
venience). 
 Among the first questions one might ask of a communication network is whether or not it 
is transitive.  For example, Monge and Contractor (2003) find transitivity in the communica-
tion patterns of 17 individuals negotiating a research and development agreement, and 
Murshed, Uddin, and Hossain (2015) found that transitivity in a communication network in-
creased as a result of organizational crisis.  Indeed, a fundamental tenet of Granovettor’s 
strength-of-weak-ties perspective is that the stronger the tie between a pair of individuals, the 
greater the overlap in their personal networks (neighborhoods).  As Wigand (1977) has 
claimed, transitivity is one of the “major properties of relational constraints . . . “ (p. 182).  
Transitivity in indifference graphs is thus a natural concept to investigate.  The following 
theorem characterizes the structure of such networks. 
 
Theorem 1 (Characterization).  The following statements are equivalent for the graph 
G = (V, R): 

(i) G is a transitive indifference graph. 
(ii) R is an equivalence relation on V. 
(iii) All components of G are complete. 
(iv) For any connected, induced subgraph H ⊆  G, the reduced graph H* consists of ex-

actly one vertex. 
(v) There exists a function f mapping vertices to the real numbers such that for any verti-

ces x and y, we have xRy if and only if f (x) = f (y). 
Proof.  We will prove the cycle of implications (i) → (ii) → . . . (v) → (i).  To see (i) → (ii),  
note that because G is a graph, R is reflexive and symmetric, and by assumption it is transi-
tive.  Therefore R is an equivalence relation.  To prove (ii) → (iii), suppose that H is a com-
ponent of G and let x and y be arbitrary vertices of H.  H a component implies it is connected, 
which in turn implies there is a path from x to y.  Because R is an equivalence relation, we 
must have xRy, which means the geodesic between them is of unit length.  Because x and y 
were chosen arbitrarily, H must be of unit diameter, and therefore complete.  For (iii) → (iv), 
let H be an induced, connected subgraph of G.  Because H is connected it is a subgraph of 
some component J ⊆ G.  Because J is complete, and because H is induced, H must be com-
plete as well.  Therefore all of its vertices have the same neighborhoods and thus every vertex 
is structurally equivalent to every other vertex, which means there is but a single equivalence 
class for H*.  For (iv) → (v), denoted by H1, H2, . . . , Hn the n components of G.  Let f (x) = i 
for every vertex of Hi, i = 1, 2, . . . , n.  Clearly xRy implies f (x) = f (y).  Furthermore, if f (x) 
= f (y) then x and y come from the same component.  And since for all i, Hi* consists of a sin-
gle equivalence class, x and y must be structurally equivalent, and therefore adjacent in G.  
Thus xRy if and only if f (x) = f (y).  Finally, we prove (v) → (i).  Clearly f (x) = f (y) implies 
the difference of these two values is 0 which, by Roberts’ (1969) result, means that G is an 
indifference graph.  Furthermore, R is transitive since, for any x, y, and z such that xRy and 
yRz,  we have f (x) = f (y) and f (y) = f (z), implying f (z) = f (z) and therefore xRz. □ 
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 Theorem 1 provides a representation for transitive indifference graphs and can be used to 
explore clique structure.  These highly cohesive subgroups exhibit relatively few communica-
tion links with the rest of the system, but high internal connectedness.  In the extreme case, 
“we should expect communication among group members to increase within subgroups, but 
to decrease between members of different subgroups.  The total ‘group’ might disintegrate 
into several warring factions” (Collins & Raven, 1969, p. 125).  As it turns out, it is precisely 
such highly factional systems that correspond to the various transitive indifference graphs.  
The correspondence is explored in the following theorem and its corollaries.  
 
Theorem 2 (Clique Structure).  Let G = (V, R) be a transitive indifference graph.  Every n-
clique contained in G is a 1-clique. 
Proof.  Suppose not, i.e. suppose there exists an n-clique of G having two of its points, x0 and 
xn, joined by a geodesic in G of length 2 or more.  Suppose that  this geodesic has vertex set 
{x0, x1, . . . , xn} and let H be the subgraph of G induced by this set.  Because G is a transitive 
indifference graph, and because H is connected and induced, the reduce graph H* consists of 
but a single equivalence class, implying x0 is adjacent to xn.  Thus the geodesic joining these 
two vertices is of unit length, contradicting the assumption that it is of length 2 or more, and 
establishing the theorem. □ 
 
Corollary 1 (Connectedness).  All n-cliques of G are connected. 
Proof.  In any graph, the 1-cliques are complete, and therefore connected. □ 
 
Corollary 2 (Tightness).  Every component of G is a sociometric clique of diameter 1. 
Proof.  Every component is an n-clique, and thus a 1-clique.  A 1-clique, being complete, has 
unit diameter, and is, by definition, a sociometric clique of diameter 1. □ 
 
Corollary 3 (Separation).  All distinct sociometric cliques of G are separated. 
Proof.  Suppose not.  Then there exist distinct sociometric cliques H = (W, S) and J = (X, T) 
such that the intersection of W and X is nonempty.  It is easy to show that if x is in the inter-
section, it is adjacent to all elements of W and X.  This implies that the subgraph induced by 
the union of W and X is connected and consequently contained in a 1-clique.  Therefore, be-
cause H and J are distinct, at least one of them must be properly contained in a 1-clique, 
which is the contradiction establishing the corollary. □ 
 
Corollary 4 (Remoteness).  G is devoid of bridges and liaisons. 
Proof.  Let H = (W, S) and J = (X, T) be sociometric cliques.  By Theorem 2, they are 1-
cliques and therefore complete.  Choose x arbitrarily and suppose it to be adjacent to some 
y ∈ X.  The transitivity of R and the completeness of J imply that x is adjacent to all vertices 
of X, so therefore x cannot be a liaison.  Moreover, it cannot be a bridge because if x were 
adjacent to some member of W, transitivity would imply that all vertices of X were adjacent 
to all vertices of W, contradicting that fact that J is maximal.  Thus, x is not a bridge. □ 
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Corollaries 3 and 4, taken together, imply that each clique in a transitive indifference graph is 
isolated from the rest of the system, while Corollaries 1 and 2 speak to the internal cohesive-
ness of such subgroups.  Transitive indifference graphs, therefore, capture the essence of a 
system marked by “warring factions.”   
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