Peer Influences on Aspirations: A Reinterpretation

Otis Dudley Duncan, Archibald O. Haller, and Alejandro Portes

ABSTRACT

The hypothesized influence of a best friend’s educational and occupational aspirations on the formation of ego’s aspirations and the reciprocal influence in the opposite direction can be represented in path diagrams and equation systems involving simultaneous or jointly dependent variables. Standard methods of path analysis may be extended along lines suggested by work in econometrics to secure estimates of coefficients when the models are just identified or overidentified. The most plausible interpretation was reached with a model postulating an underlying factor, “ambition,” that is involved in such reciprocal influences and accounts for the correlations among the observed indicators, educational aspirations and occupational aspirations. Homophily with respect to background characteristics does not fully explain homophily with respect to ambition; a path coefficient of about 0.2 runs from friend’s to respondent’s ambition, and one of equal size runs in the opposite direction.

The hypothesis that interaction with peers influences levels of educational and occupational aspirations of adolescents, enunciated by Haller and Butterworth in 1960, has proved to be an intriguing one, to judge by the attention given it subsequently. Without mentioning the several studies of “school climates,” wherein the hypothesis is more or less assumed to be correct in order to interpret ostensible “school effects,” we may refer to studies specifically directed to tests of the hypothesis itself or one of several closely related hypotheses which have also been subjected to scrutiny.

To summarize our present knowledge: (1) The supposition that homophily with respect to socioeconomic characteristics is generated by socioeconomic segregation of school populations was considered by Rhodes, Reiss, and Duncan, who were able to show that a minor part of the observed homophily is due to school segregation, the greater part to assortative choices of friends within schools. (2) In their study, Haller and Butterworth were concerned to eliminate socioeconomic homophily as a complete explanation of similarity in aspirations of friends. Hence, they considered peer-pairs whose members were alike in social class background and with respect to level of parental aspiration for their sons, as well as in measured intelligence. They showed that a positive intraclass correlation of close friends’ aspirations held within such homogeneous pairs. (3) Invoking balance theory, Alexander and Campbell observed that agreement between friends’

1 This is a report from Project 5-0074 (EO-191), “Socioeconomic Background and Occupational Achievement: Extensions of a Basic Model,” carried out under Contract OE-5-85-072 with the U.S. Office of Education. The assistance in computation of Ruth C. Sweet is gratefully acknowledged.

plans and desires to attend college was greater when the friendship choice was reciprocated than when it was not.\(^4\)

In a second analysis, the same writers showed that "structural effects" of school socioeconomic composition were mediated by individual status effects, in that the former disappeared when the latter were taken into account: "Given knowledge of an individual's immediate interpersonal influences, the characteristics of the total collectivity provide no additional contribution to the prediction of his [college plans]."\(^5\)

While Cramer notes an appreciable frequency of extreme incongruity between educational plans and occupational aspirations, the correlation between the two variables is relatively high, and too high to be explained fully by the operation of background factors as common causes.\(^7\)

That "structural effects" are no large part of the explanation of similarity in friends' aspirations is easily demonstrated by an even more straightforward method than that used by Campbell and Alexander. For illustration, consider the correlation of .4986 between educational plans and friend's plans obtained by William H. Sewell (unpublished) for an all-Wisconsin sample of 4,386 boys who were high school seniors in 1957. Sewell found a correlation of .3364 between respondent's plans and the percentage of students in his class planning to go to college and similarly a correlation of .3327 between friend's plans.

The evidence is clear, therefore, that neither status homophily nor similarity in aspirations of friends is close to being adequately explained by school "structural effects" or school segregation. Yet the latter factors are important enough that they must be taken into account in estimating the impact of peer interaction on the formation of aspirations. By limiting the inquiry to a single school (or, alternatively, by looking at average within-school relationships), one can eliminate these factors from the analysis.

There remains the question of how to estimate the magnitude of peer influence, a problem not tackled directly in the studies cited, where the authors were content to stop with the detection of significant relationships indicating that a non-spurious correlation between aspirations (or plans) and friend's aspirations actually exists. The estimation (as distinct from detection) of such effects appears to be a particular instance of a generic problem for which explicit explanatory models have not yet been proposed. The purpose of this report is to suggest the possibilities in one kind of model. The purpose is realized with a presentation of some possible reinterpretations of the data originally collected and analyzed by Haller and Butterworth in the paper already cited.

DATA

The original sample consisted of all seventeen-year-old boys in school in Lenawee County (Michigan) during the spring of 1957, interviews and test data being secured for 442 persons. For 329 of these boys, data were included in the same sample for at least one person listed as a best friend. Whether the friendship was reciprocated is not considered in this analysis. Some of the friends are, of course, included among the 329 respondents identified by this procedure, but others are not. It is important to note that the data on social and psychological characteristics as well as aspirations were obtained directly from the
friend and not via the respondent's report on his friend.

The five variables to be considered are briefly enumerated (for lengthier descriptions, see the original publication): 8 Level of occupational aspiration is the score on Haller and Miller's Occupational Aspiration Scale. Level of educational aspiration is a composite score based on several questions about the number of years of college or university training the respondent planned to complete. Socioeconomic status (SES) is measured by Sewell's socioeconomic status scale, which includes items of parental educational attainment as well as material possessions in the home. Intelligence refers to raw scores on Cattell's Test of G Culture Free. Parental aspirations are indexed by a composite score from the answers to questions asked about the degree to which parents "encouraged" the respondent to have high levels of achievement. The distribution of each of these variables was normalized as a preliminary step to all further calculations.

The intercorrelations of these variables are presented in Table 1. For comparison, the same table includes the correlations derived from the complete data on all 442 boys. It appears that the correlations either for friends or for respondents are fairly representative of those obtained within the whole population.

MODELS

It is easy to demonstrate that neither socioeconomic homophily nor friendship assortment by intelligence, nor the combination of the two, suffices to account for the correlation between respondent's and friend's aspirations. For example, the correlation between the two occupational aspirations is given in Table 1 as .42. In a multiple regression of respondent's occupational aspiration on friend's occupational aspiration, with the intelligence, parental aspiration, and SES of both boys included as additional independent variables, the standardized net regression coefficient (β coefficient) is a highly significant .26. If the regression is turned around, with friend's aspiration as the dependent variable and respondent's aspiration as one of the seven independent variables, its coefficient is .24.

While these results demonstrate that

TABLE 1

Observed Correlations for 329 Respondents and Their Best Friends (Above Diagonal), and "Synthetic" Correlations, Including Observed Correlations for 442 Respondents (Below Diagonal)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Xa</th>
<th>Xb</th>
<th>Xc</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Xd</th>
<th>Ye</th>
<th>Yf</th>
<th>Yg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respondent:</td>
<td></td>
</tr>
<tr>
<td>Intelligence</td>
<td>X</td>
<td>.1839</td>
<td>.2220</td>
<td>.4105</td>
<td>.4043</td>
<td>.3355</td>
<td>.1021</td>
<td>.1861</td>
<td>.2598</td>
<td>.2993</td>
<td></td>
</tr>
<tr>
<td>Parental aspiration</td>
<td>Xa</td>
<td>.16*</td>
<td>.0489</td>
<td>.2137</td>
<td>.2742</td>
<td>.0782</td>
<td>.1147</td>
<td>.0186</td>
<td>.0639</td>
<td>.1124</td>
<td></td>
</tr>
<tr>
<td>Family SES</td>
<td>Xb</td>
<td>.23*</td>
<td>.09*</td>
<td>.3240</td>
<td>.4047</td>
<td>.2302</td>
<td>.0031</td>
<td>.2707</td>
<td>.2786</td>
<td>.3054</td>
<td></td>
</tr>
<tr>
<td>Occupational aspiration</td>
<td>Y</td>
<td>.45*</td>
<td>.22*</td>
<td>.37*</td>
<td>.6247</td>
<td>.2995</td>
<td>.0760</td>
<td>.2930</td>
<td>.4216</td>
<td>.3269</td>
<td></td>
</tr>
<tr>
<td>Educational aspiration</td>
<td>Yb</td>
<td>.41*</td>
<td>.29*</td>
<td>.41*</td>
<td>.64*</td>
<td>.2863</td>
<td>.0702</td>
<td>.2407</td>
<td>.3275</td>
<td>.3669</td>
<td></td>
</tr>
<tr>
<td>Best friend:</td>
<td></td>
</tr>
<tr>
<td>Intelligence</td>
<td>X</td>
<td>.34</td>
<td>.09</td>
<td>.21</td>
<td>.28</td>
<td>.29</td>
<td>.2087</td>
<td>.2950</td>
<td>.5007</td>
<td>.5191</td>
<td></td>
</tr>
<tr>
<td>Parental aspiration</td>
<td>Xa</td>
<td>.09</td>
<td>.11</td>
<td>.06</td>
<td>.08</td>
<td>.09</td>
<td>.16*</td>
<td>-.0438</td>
<td>.1988</td>
<td>.2784</td>
<td></td>
</tr>
<tr>
<td>Family SES</td>
<td>Xb</td>
<td>.21</td>
<td>.06</td>
<td>.27</td>
<td>.29</td>
<td>.27</td>
<td>.23*</td>
<td>.09*</td>
<td>.3607</td>
<td>.4105</td>
<td></td>
</tr>
<tr>
<td>Occupational aspiration</td>
<td>Y</td>
<td>.28</td>
<td>.08</td>
<td>.29</td>
<td>.42</td>
<td>.33</td>
<td>.45*</td>
<td>.22*</td>
<td>.37*</td>
<td>.6404</td>
<td></td>
</tr>
<tr>
<td>Educational aspiration</td>
<td>Yb</td>
<td>.29</td>
<td>.09</td>
<td>.27</td>
<td>.33</td>
<td>.37</td>
<td>.41*</td>
<td>.29*</td>
<td>.41*</td>
<td>.64*</td>
<td></td>
</tr>
</tbody>
</table>

Observed correlations for 442 respondents; remaining correlations below diagonal are obtained by averaging correlations above diagonal, as explained in the text.
there is a net relationship between respondent's and friend's aspirations with homophily taken into account, the method by which these regression coefficients are estimated is not acceptable if we postulate both a causal influence of friend's on respondent's aspiration and vice versa. If friend's aspiration influences respondent's, it is illogical to use a model in which the latter is an explanatory variable in accounting for the former without reckoning with the reciprocal influence of the former upon the latter. Given that only one observation is made upon each aspiration, presumably at a stage when both have become relatively crystallized, we must think of the two dependent variables as being simultaneously determined, each being influenced by the other as well as by the remaining variables in the model.

Some exposition of simultaneous models, or models incorporating reciprocal influences, appears in the literature on path analysis. Models of this type have been extensively considered in econometrics. It is clear from the discussion in both these contexts that straightforward regression of one dependent variable upon a set of predictor variables does not yield the proper estimate of the effect of a variable which is simultaneously being determined within the model. Our interpretation here is presented in the framework of path analysis, but takes advantage of some of the approaches developed in econometrics. The reader is referred to a previous discussion of path analysis in sociological research with the warning that some of the simplified algorithms for path diagrams stated there apply only to simple recursive systems and not to simultaneous systems. This paper, then, affords an introduction to and illustration of the treatment of such systems in a path framework. Emphasis is placed on explicit statement of the equations and specifications of the model and the derivations that may be made therefrom to secure equations from which estimates may be calculated.

A JUST-IDENTIFIED MODEL

Several models will be presented for didactic purposes before we arrive at one that
takes a reasonably firm though tentative interpretation. Model I (Fig. 1) represents
occupational aspiration as depending directly on intelligence, family SES, friend's
family SES, friend's occupational aspiration, and unspecified residual factors (or
"disturbances," in the econometrician's parlance). The crucial assumption of the
model is that occupational aspiration does not depend directly on friend's intelligence.
Occupational aspiration does, however, depend directly on friend's family SES, an
assumption that seems plausible enough if we consider the possibility that members of
the friend's family as well as one's own may afford role models.

Three classes of variables are distinguished. The variables to the left, denoted by X's
with letter subscripts taken from the first part of the alphabet, are "predetermined variables" with respect to this model. (The same variables might, of course, occur in a different role in some other model.) The Y's, with numerical subscripts, are the "endogenous variables," determined within the model, sometimes also called "jointly dependent variables." The X's with letter subscripts drawn from the end of the alphabet are "disturbances," standing for the residue of factors influencing aspiration but not explicitly measured.

The essential specification for all models of this type is that the disturbances are uncorrelated with the predetermined variables, though not (of course) with the endogenous variables and not necessarily with each other. Thus \(r_{xa} = r_{ca} = r_{ya} = r_{da} = r_{ea} = r_{ea} = r_{ca} = r_{ya} = r_{da} = 0. \) (We use \(r_{ea} \) as a more economical notation for \(r_{ea}, X_a, \) etc.)

The intercorrelations of the predetermined variables are represented by the curved lines connecting them; similarly, there is a correlation between the two disturbances represented by a curved line. (The arrowheads at both ends of such curved lines, which are conventional in path
diagrams, are omitted here to suggest that one must not rely on the usual algorithm for reading compound paths from the diagram when the system is non-recursive.)

While the diagram, on the conventions understood for reading it, specifies the model adequately, it is essential that the model also be stated explicitly in equations. Model I comprises two equations:

\[
Y_1 = p_{1a}X_a + p_{1e}X_e + p_{1f}X_f
+ p_{1s}Y_1 + p_{1w}X_w
\]

and

\[
Y_2 = p_{2a}X_a + p_{2f}X_f + p_{2e}X_e
+ p_{2s}Y_1 + p_{2w}X_w.
\]

To these equations must be attached the earlier stipulation that disturbances are uncorrelated with predetermined variables.

To calculate estimates of the path coefficients, we must derive equations that yield a solution for them. To do this, we take advantage of the condition concerning the zero correlation of the predetermined variables and disturbances. Consider the first equation of the Model I. Multiply both sides of the equation by \(X_a \), sum both sides over sample observations, and divide both sides by \(N \), the number of sample observations. This yields

\[
\frac{\sum Y_1X_a}{N} = p_{1a} \frac{\sum X_aX_a}{N} + p_{1e} \frac{\sum X_eX_a}{N}
+ p_{1f} \frac{\sum X_fX_a}{N} + p_{1s} \frac{\sum Y_1X_a}{N}
+ p_{1w} \frac{\sum X_wX_a}{N}.
\]

Since we are dealing with standardized variables (zero mean, unit variance), an expression like \(\sum Y_1X_a/N \) simplifies immediately to \(r_{1a} \) while \(\sum X_aX_a/N = 1 \). Note especially that \(\sum X_eX_a/N = r_{ea} = 0 \), on the specification already stated. We proceed to multiply the first equation through by each of the four predetermined variables and to simplify the results as just indicated. This
work yields the following set of four equations:

\[
\begin{align*}
 r_{1e} &= \theta_{1e} + \theta_{1e}\theta_{1c} + \theta_{1e}\theta_{1f} + \theta_{1e}\theta_{1u}, \\
 r_{1o} &= \theta_{1o}\theta_{1e} + \theta_{1o}\theta_{1c} + \theta_{1o}\theta_{1f} + \theta_{1o}\theta_{1u}, \\
 r_{1f} &= \theta_{1f}\theta_{1e} + \theta_{1f}\theta_{1c} + \theta_{1f}\theta_{1f} + \theta_{1f}\theta_{1u}, \\
 r_{1u} &= \theta_{1u}\theta_{1e} + \theta_{1u}\theta_{1c} + \theta_{1u}\theta_{1f} + \theta_{1u}\theta_{1u}.
\end{align*}
\]

Or, in matrix form,

\[
\begin{pmatrix}
 r_{1e} & r_{1o} & r_{1f} & r_{1u} \\
 r_{1e} & r_{1o} & r_{1f} & r_{1u} \\
 r_{1e} & r_{1o} & r_{1f} & r_{1u} \\
 r_{1e} & r_{1o} & r_{1f} & r_{1u}
\end{pmatrix}
\begin{pmatrix}
 \theta_{1e} \\
 \theta_{1o} \\
 \theta_{1f} \\
 \theta_{1u}
\end{pmatrix}
= \begin{pmatrix}
 r_{1e} \\
 r_{1o} \\
 r_{1f} \\
 r_{1u}
\end{pmatrix}.
\]

It will be noted that the square matrix on the left is not symmetric, unlike the case of the normal equations in conventional regression. Nevertheless, it will almost always be possible to invert this matrix (barring excessive collinearity among the predetermined variables) and thus to solve the four equations for the four unknown path coefficients, all the correlations on both the left- and right-hand sides of the equations being given in the data.

That we have exactly four equations to solve for four unknowns is essentially what is meant by saying that the model, or, more particularly, the relation in which \(Y_1 \) figures as the dependent variable, is "just identified." (The same holds, in this model, for the relation in which \(Y_2 \) is the dependent variable, but it need not always be the case that the situation in regard to identifiability is the same with respect to all relations in the model.) The econometricians have much more elegant ways of analyzing identifiability, but what it comes down to in cases like the one at hand is this: \(Y_1 \) depends on four variables explicitly (leaving aside the disturbance term), and there is just the same number of predetermined variables in the model. If there were four explanatory variables for \(Y_1 \) but fewer predetermined variables in the model, then the relation for \(Y_1 \) would be "underidentified"; that is, we could not derive a sufficient number of equations to yield a unique solution for the estimated paths leading to \(Y_1 \) (at least, not without some alteration in the specification of the model). On the other hand, if there are more predetermined variables than there are explanatory variables occurring in the model's equation for \(Y_1 \), this relation would be "overidentified" (examples of overidentification are given below).

The same procedure can be followed to secure equations from which we may solve for the paths leading to \(Y_3 \); that is, the second equation of the model is multiplied through, in turn, by each of the four predetermined variables, and the results are simplified to yield four equations in known correlations and four unknown path coefficients.

The method just presented yields exactly the same results as does the method of "indirect least squares," which is applicable to just-identified relations in a model. Computationally, however, it is a considerable simplification over indirect least squares, as has been noted in at least one textbook of econometrics.\(^1\)

Some tedious but straightforward work remains if we are to calculate residual paths and the correlation between disturbances. We now multiply through each of the model equations by each of the endogenous variables and by each of the disturbance variables. This yields eight equations, which take the following form upon simplification:

\[
\begin{align*}
 r_{11} &= 1 - \theta_{1e}\theta_{1c} - \theta_{1e}\theta_{1f} - \theta_{1e}\theta_{1u} \\
 r_{12} &= \theta_{1o}\theta_{1e} + \theta_{1o}\theta_{1c} + \theta_{1o}\theta_{1f} + \theta_{1o}\theta_{1u} \\
 r_{13} &= 1 - \theta_{1f}\theta_{1e} - \theta_{1f}\theta_{1c} - \theta_{1f}\theta_{1f} - \theta_{1f}\theta_{1u} \\
 r_{14} &= \theta_{1u}\theta_{1e} + \theta_{1u}\theta_{1c} + \theta_{1u}\theta_{1f} + \theta_{1u}\theta_{1u} \\
 r_{21} &= \theta_{1e}\theta_{2c} + \theta_{1e}\theta_{2f} + \theta_{1e}\theta_{2u} \\
 r_{22} &= 1 - \theta_{1o}\theta_{2e} - \theta_{1o}\theta_{2c} - \theta_{1o}\theta_{2f} - \theta_{1o}\theta_{2u} \\
 r_{23} &= \theta_{1f}\theta_{2e} + \theta_{1f}\theta_{2c} + \theta_{1f}\theta_{2f} + \theta_{1f}\theta_{2u} \\
 r_{24} &= \theta_{1u}\theta_{2e} + \theta_{1u}\theta_{2c} + \theta_{1u}\theta_{2f} + \theta_{1u}\theta_{2u}
\end{align*}
\]

\(^1\)Goldberger, op. cit., p. 348.
A convenient solution routine is to compute $p_{14} r_{12}$ from the first equation (all other terms in it now being known), $p_{14} r_{12}$ from the second, $p_{24} r_{24}$ from the third, and $p_{24} r_{12}$ from the fourth. The values thus obtained can be substituted into the fifth and sixth equations to compute p_{14} and p_{24}, and it is then possible to obtain r_{12}, r_{24}, r_{24}, and r_{12} by a back solution. Either of the last two equations can then be used to obtain r_{12}; if both are used, one has a partial check on the arithmetic.

Although it is advisable to retain a generous number of decimal places in the initial correlations and all intermediate calculations, the results are not likely to be meaningful for more than two places; the rounded estimates are shown in Figure 1.

Model I was also used with educational aspiration in place of occupational aspiration; that is, Y_3 replaced Y_1 and Y_4 replaced Y_2, with the predetermined variables and specifications remaining unchanged. For comparison, the results are as follows:

$\rho_{12} = .27, \quad \rho_{13} = .04, \quad \rho_{24} = .84,$

$\rho_{23} = .26, \quad \rho_{24} = .22, \quad \rho_{44} = .79,$

$\rho_{25} = .02, \quad \rho_{45} = .36, \quad \rho_{45} = -.38,$

$\rho_{34} = .25, \quad \rho_{45} = .29,$

where X_1 and X_2 are the disturbances for Y_1 and Y_2, respectively.

The two sets of results are similar in most respects. Intelligence and family SES are appreciable influences on aspiration, while the influence of friend's family SES is barely detectable. The reciprocal paths of influence of friend's aspiration on respondent's aspiration, and vice versa, are around .2 or .3, by no means a negligible value. In both sets of results, consistent estimates are obtained only by acknowledging a rather substantial negative correlation between the disturbances of the two aspiration variables. If the analyst feels uncomfortable with the size of this correlation, as one may well feel in the absence of any evident rationalization of it, he may be inclined to reject the model even though the remaining estimates are reasonable.

Several things could be awry. Perhaps it is mistaken to argue that friend's intelligence can have no direct influence on one's aspiration (even though insertion of an additional path for this variable in Model I will render it underidentified). Perhaps there is a variable (such as "ambition," introduced into Model IV) omitted from the model with respect to which there is pronounced homophily and which is a significant cause of aspiration. In this event, the paths between the aspiration variables are probably overestimated, and the residual correlation is forced to compensate for this. In the present state of theory in social psychology, we are not likely to have firm grounds for asserting the validity of a model on grounds completely independent of the data for a given problem. Hence, it would seem that the best we can do is propose reasonable models, consider their plausibility, and, where indicated, undertake the construction of alternative ones (or await the work of a critic who may do so). Several alternatives to Model I were in fact attempted which yielded even less satisfactory results, but this does not prove that still another alternative could not be plausibly proposed.

AN OVERIDENTIFIED MODEL

One such alternative is instructive, both as an example of estimation procedure when one is confronted with overidentification and as an indication of the sensitivity of the results to what may appear to be minor modifications of the model. In Model II (Fig. 2), we delete the path from friend's family SES to aspiration (and vice versa), suspecting on the basis of results with Model I that this variable is not very consequential. With this deletion, the equations are:
where X_* is the residual for this regression. Now, let Y^*_1 stand for the sum of the first four terms on the right, after that sum has been expressed in units of its own standard deviation, so that

$$Y^*_1 = r_{T_1} Y_1 + r_{12} X_* .$$

If we multiply this equation through by Y_1 and simplify, we obtain

$$r_{11} = 1 - r_{T_1}^2 r_{11}^2 + r_{12}^2,$$

which is the usual partitioning of total variance into "explained" and "unexplained," with $r_{T_1}^2 r_{11}^2$ being the coefficient of determination, $R_{11}^2 (w)$.

The two-term expression for Y_1 obtained from this first-stage regression is now sub-

$$Y_1 = p_{10} X_0 + p_{12} X_2 + p_{11} Y_1 + r_{12} X_* .$$

As before, the predetermined variables are specified to be uncorrelated with the disturbances, but the latter two variables may be correlated with each other.

The identification problem is now clear. If we use all our predetermined variables as before, we obtain four equations (for $r_{11}, r_{12}, r_{13},$ and r_{14}) in three unknowns ($p_{10}, p_{12},$ and p_{11}). The solution obtained from any three of these equations will, in general, not satisfy the fourth. Indirect least squares, or the equivalent procedure described above, is not available as a method of estimation. We resort to a procedure suggested by the econometrician's method of "two-stage least squares." The modifications of that method introduced here are required by the facts that we are working with standardized variables and that the correlation matrix of the observed variables constitutes the initial data of the problem.

We first compute a "first-stage regression" of Y_1 on all the predetermined variables; since we are working from correlations, the regression coefficients come out as β coefficients:

$$Y_1 = \beta_{10} X_0 + \beta_{12} X_2 + \beta_{11} Y_1 + r_{12} X_* ,$$

$$Y_1 = p_{12} X_0 + p_{12} X_2 + p_{11} Y_1 + r_{12} X_* .$$

FIG. 2.—Model II

 substi-
least-squares regression. Finally, since Y_i^* is a linear combination of X_o, X_e, X_{f1}, and X_d, all of which are uncorrelated with the disturbance X_w, we have $r_{X_wY_i^*} = 0$. From all this it follows that we can ignore the last two terms in the equation for Y_i when we multiply through by each of the three variables in turn. Hence, we obtain:

$$r_{ud} = p_{ud} + p_{ud} r_{ux} + p_{ur} r_{ux} r_{uy}$$

$$v_{ul} = p_{ul} + p_{ul} r_{ux} + p_{ur} r_{ux} r_{uy}$$

$$r_{uy}^* = p_{ur} r_{ux} + p_{ur} r_{ux} r_{uy} + p_{ur} r_{ux} r_{uy}^*$$

A further simplification follows from the fact (easily proved) that $r_{uy}^* x_{uy} = r_{ux}^*$ (or r_{ux}^* in the more economical notation) and $r_{uy}^* x_{uy}^* = r_{uy}$. The third equation is simplified by multiplying both sides by r_{uy}^* so that the equations to be solved can be rewritten:

$$r_{ud} = p_{ud} + p_{ul} r_{ux} + p_{ur} r_{ux}$$

$$r_{ul} = p_{ul} + p_{ul} r_{ux} + p_{ur} r_{ux}$$

and

$$r_{uy}^* x_{uy}^* = p_{ur} r_{ux} + p_{ur} r_{ux} r_{uy} + p_{ur} r_{ux} r_{uy}^*$$

It only is necessary to compute $r_{uy}^* r_{xy}^* = \beta_{2u} x_{2u} + \beta_{1u} x_{1u} + \beta_{1u} x_{1u} x_{2u} + \beta_{1u} x_{1u} x_{2u}$ before solving these three equations for the unknowns, p_{ud}, p_{ul}, and p_{ur}. The first two of these equations, of course, could have been obtained in a less roundabout way, but it was desirable to indicate their connection with the two-stage method.

The same procedure, with appropriate interchanges of variables, is next used to estimate p_{2u}, p_{1u}, and p_{2u} in the first equation of Model II, after executing a first-stage regression of Y_i on all the predetermined variables. We now have estimates of all the path coefficients in the model save those for the disturbance variables. At this point we may consider the correlations of the endogenous with the predetermined variables that are implied by these estimates, since the method of estimation did not constrain these correlations to equal their observed values. If we multiply the first equation of the model through by X_u and simplify, the result, we obtain:

$$r_{iu} = p_{iu} + p_{iu} x_{iu} + p_{iu} r_{iu}$$

where the prime distinguishes the implied from the observed correlation, r_{iu}. Similarly, the remaining seven implied correlations are obtained by multiplying through the model equations by each predetermined variable in turn. We show below the implied correlations computed from such formulas (with their deviations from the observed correlations in parentheses):

$$r_{iu} = .4235(.0130), r_{iu} = .5120(.0113),$$

$$r_{iu} = .3032(-.0208), r_{iu} = .3385(-.0222),$$

$$r_{iu} = .2281(-.0649), r_{iu} = .2271(-.0515),$$

$$r_{iu} = .3327(.0332), r_{iu} = .2921(.0323).$$

It will be noted that the largest deviations are for r_{iu} and r_{iu}, while it was p_{iu} and p_{iu} that we deleted from Model I to construct Model II. That this deletion was perhaps inadvisable is suggested, as well, by the implausibly high values for p_{iu} and p_{iu} (.40 and .34, respectively), compensated by the substantial negative correlation between disturbances, $r_{iu} = -.48$.

The calculation of that correlation, as well as the paths for the disturbances, is effected in the same way that was illustrated for Model I. Here, however, for consistency we must be careful to use the implied correlations of the model in calculating the residual paths.

A PARTIALLY RECURSIVE MODEL

Both models discussed thus far are "simultaneous" models in that the endogenous variables are jointly determined by the model within a single period of observation. In simple recursive models, by contrast, we assume that the endogenous variables are successively determined, and the specification is altered to exclude correlation of the disturbances among themselves. The latter specification (zero intercorrelation of disturbances) is common to the Simon-Blalock procedure of causal analysis and to the examples of stratification models given in a previous publication.
on path analysis. There is no apparent reason, however, why features of both types of model cannot be combined in a single construction. (The term "construction" might well be preferred to "model" in contexts like the present one, to emphasize that we are indeed "construing" the data.

In Model III (Fig. 3), we reason as though respondents and their friends "first" make up their minds what occupations they would like to pursue, and "then," on the basis of the occupational choice and other considerations, "decide" what educational preparation they may need. That such a construction is at best an oversimplification may be evident from introspection. This model, like the preceding ones, serves primarily a didactic purpose.

In the first sector of the model, occupational aspirations Y_1 and Y_5 are simultaneous endogenous variables and the specification is exactly the same as for Model I. We then assume that with respect to educational aspiration (Y_3 and Y_4) the pre-determined variables include not only X_a, X_e, X_f, and X_d but also Y_1 and Y_5. Hence the specification $r_{1s} = r_{se} = r_{as} = 0$; but r_{ae}, r_{ae}, r_{ae}, r_{ae}, r_{as}, and r_{as} are not necessarily zero. The equations of the model are

$$ Y_1 = p_{1a} X_a + p_{1e} X_e + p_{1f} X_f + p_{1s} Y_1 + p_{1e} X_e $$

$$ Y_3 = p_{3a} X_a + p_{3e} X_e + p_{3f} X_f (Model III) + p_{3s} Y_1 + p_{3e} Y_4 + p_{3e} X_e $$

$$ Y_4 = p_{4a} X_a + p_{4e} X_e + p_{4f} X_f + p_{4s} Y_3 + p_{4e} X_e $$

In estimating the parameters of this model, we have engaged in a preliminary manipulation of the data which has nothing to do with the properties of the model but which is suggested by the somewhat artificial design of the data matrix. From the original correlation matrix in Table 1, we
constructed a "synthetic" correlation matrix which was forced to be symmetrical in variables pertaining to respondent and friend. The intercorrelations of educational aspiration, occupational aspiration, family SES, and intelligence were assumed to be the same for respondents and friends, and the values thereof were assumed to be those observed in the entire original sample of 442 boys. The correlation between friend and respondent on each of these variables was retained from the data on the 329 pairs. The "cross-correlations" between friend and respondents were averaged; thus, for example, in the synthetic correlation matrix \(r_{1a} = r_{d1} \) and each is the average of \(r_{ia} \) and \(r_{id} \) as initially computed. The synthetic matrix is shown below the diagonal in Table I. Given the symmetry of the data and the model, it is necessary to carry out computations for estimating only the path coefficients in the first and third equations.

Estimates for the first equation are obtained in the same way as described for Model I, and, indeed, the results differ from those in Model I only slightly. The third equation (for \(Y_3 \)) is just identified, in virtue of the specification \(r_{3b} = 0 \). Thus, we can multiply this equation through by \(Y_1, X_a, X_r, X_i, \) and \(X_4 \) in turn and simplify to obtain five equations in the five unknown path coefficients and known correlations. The calculation of residual paths for all equations proceeds along the lines already illustrated for Model I.

From the perspective of the hypothesis that orient this study, the most interesting estimates are those for the reciprocal paths for aspirations: \(p_{12} = p_{21} = .25 \) and \(p_{34} = p_{43} = .24 \). The paths from predetermined to endogenous variables seem reasonable, except perhaps for the negative though small value of \(p_{41}(= p_{14}) = -.03 \). That family SES has an apparently larger influence on educational aspiration than does intelligence may be explained by two considerations: intelligence has a sizable influence on occupational aspiration, which, in this model, intervenes between the latter and educational aspiration; and the family SES scale is heavily weighted by parental educational attainment.

In short, the model gives satisfactory estimates on the whole, if we are prepared to accept the excessively rationalistic assumption that occupational decisions precede educational decisions (both being measured well before the actual decision point), and if we are prepared to overlook the substantial negative correlations between disturbances, \(r_{uv} = -.25 \) and \(r_{vs} = -.39 \). Dissatisfaction with our ability to rationalize the latter motivated one more alternative construction on these data.

A COMPOSITE MODEL

The approach taken in Model IV (Fig. 4) was suggested by a remark of Turner and Stevens, who called attention to the possibility of constructions including aspects of both factor analysis and causal modeling. The analogy with factor analysis here consists in the postulation of an unobserved variable, called "ambition" for lack of a better term, that underlies both educational and occupational aspiration. There are perhaps two justifications for such a postulate. First, both aspiration variables are probably rather unreliable relative to the other variables in the model, and it might be advisable to follow a procedure that reduces the attenuation introduced by measurement error before proceeding to a causal interpretation. Second, on a purely introspective basis it seems likely that many boys do not make a neat conceptual separation of educational and occupational aspirations, nor do they make plans for schooling and job choices in any fixed order. The argument here is just the opposite of the one that would have to be used to justify the precedence of occupational aspiration with respect to educational aspiration in Model III. If the reader likes, he may identify "ambition" with general level of aspiration, as the latter was conceptualized in the classic literature on

the subject. Our procedure would then suggest that level of aspiration can only be manifested in and recognized by orientations toward particular goals, such as educational attainment or occupational achievement. We are, in effect, using verbalized educational and occupational aspirations as indicators of the construct, level of aspiration or "ambition."

Although the approach taken to the construction of hypothetical "ambition" variables is suggested by factor analysis, the actual procedure is an ad hoc one that depends on various heuristic considerations rather than on one of the standard factor models. Lest this arouse undue anxiety, we observe that the classic factor models, in their time, were similarly motivated by heuristic concerns. That they have become frozen into a canonical procedure taken over by investigators of problems whose structures are quite different from those of the pioneers is perhaps a commentary on the relative potency of propensities to imitate and to innovate in research. Certainly, after Wright's illuminating contrast between the interpretive and the purely mathematical approaches to factor analysis, we need no longer feel constrained to follow a single routine that someone has ventured to dub "objective" or "optimal."

We begin, as usual, by writing the entire set of equations which are graphically represented in the path diagram of Model IV:

\[Y_1 = \beta_{10}G + \beta_{11}X_u, \]
\[Y_2 = \beta_{20}G + \beta_{21}X_v, \]
\[Y_3 = \beta_{30}H + \beta_{31}X_u, \]
\[Y_4 = \beta_{40}H + \beta_{41}X_v, \] (Model IV)
\[G = \beta_{00}X_5 + \beta_{01}X_u + \beta_{02}X_v + \beta_{03}X_s + \beta_{04}X_f + \beta_{05}X_s + \beta_{06}X_v, \]
\[H = \beta_{H0}X_s + \beta_{H1}X_u + \beta_{H2}X_v + \beta_{H3}X_f + \beta_{H4}X_s + \beta_{H5}X_v. \]

The last two equations contain the substance of the model. G and H are the simultaneous endogenous variables, \(X_5, \ldots, X_f \) are the predetermined variables, and \(X_s \) and \(X_v \) are the disturbances, which need not be uncorrelated with each other although both are uncorrelated with all predetermined variables. Each relation is overidentified,

since each includes only five explanatory variables while there are six predetermined variables in the model. We shall again employ the version of two-stage least squares illustrated for Model II when we come to the estimation of the path coefficients in these two equations.

Before proceeding to this task, we must first construct the two hypothetical endogenous variables by deriving their correlations with the predetermined variables, making use of the intercorrelations of the aspiration scores. Hence, attention will be focused first on the right-hand portion of the diagram.

The factor model employed here says that the correlation between a boy's educational and occupational aspirations is completely accounted for by his "ambition." The correlation between the aspirations of friends is substantially accounted for by the correlation of their respective values on "ambition," but the model allows for some between-friend correlation of specific elements in the two aspiration scores. Hence, the specifications

\[r_{12} = \rho_{12}p_{10} = r_{10}p_{10}, \]

\[r_{14} = \rho_{14}p_{14} = r_{14}p_{14}, \]

\[r_{18} = \rho_{18}p_{18} + \rho_{18}p_{18}, \]

\[r_{24} = \rho_{24}p_{24} + \rho_{24}p_{24}, \]

\[r_{28} = \rho_{28}p_{28} + \rho_{28}p_{28}. \]

Bringing the predetermined variables into the picture, we note that \(r_{10} = \rho_{10}p_{10} \) and \(r_{18} = \rho_{18}p_{18} \). From these it would follow that \(\rho_{10}/p_{10} = r_{10}/r_{10} \), but we can equally well compute \(\rho_{10}/p_{10} = r_{14}/r_{14} \), and so on. As a compromise among the six possible estimates of this ratio, we take

\[\rho_{10}/p_{10} = \frac{\sum r_{1i}}{\sum r_{1i}}. \]

where \(i = a, \ldots, f \). Given this ratio \(\rho_{10}/p_{10} \) and the previously noted \(r_{12} = \rho_{12}p_{12} \), we can solve at once for \(\rho_{12} \) and \(p_{12} \). A similar procedure yields \(\rho_{14} \) and \(p_{14} \).

Now, if we disregard correlations among the residual factors of the \(Y \)'s, we may compute the implied correlations,

\[r_{12} = \rho_{12}p_{12}, \]

\[r_{14} = \rho_{14}p_{14}, \]

\[r_{18} = \rho_{18}p_{18}, \]

\[r_{24} = \rho_{24}p_{24}, \]

\[r_{28} = \rho_{28}p_{28}. \]

Let \(\delta_1 = r_{12} - r_{12}^2, \delta_2 = r_{14} - r_{14}^2, \delta_3 = r_{18} - r_{18}^2, \delta_4 = r_{24} - r_{24}^2, \delta_5 = r_{28} - r_{28}^2, \) and \(S = \Sigma \delta^2 \). We wish to select \(r_{10} \) so that \(S \) is at its minimum. Finding \(dS/dr_{10} \), setting it equal to zero, and rearranging, we obtain

\[r_{10} = \frac{r_{12}p_{12} + r_{14}p_{14} + r_{18}p_{18} + r_{24}p_{24} + r_{28}p_{28}}{(\rho_{10}p_{10})^2 + (\rho_{14}p_{14})^2 + (\rho_{18}p_{18})^2 + (\rho_{24}p_{24})^2 + (\rho_{28}p_{28})^2}. \]
The path coefficients in this expression have already been estimated and the correlations are known; hence \(r_{GH} \) is easily calculated as .55, which is the hypothetical correlation between "ambition" of respondent and "ambition" of friend. It is a materially higher value than any of the observed correlations between aspiration scores. This is the most important result of the work done to this point. We complete this phase of the calculations by computing residual paths for the aspiration variables, using formulas like \(p_{PH} = 1 - p_{PH}^2 \), which are obvious from the model equations. Finally, we may return to the identities stated for the intercorrelations among the \(Y \)'s with enough information in hand to solve the last four equations for \(r_{uu}, r_{uu}, r_{uw}, \) and \(r_{uw} \), respectively.

One more step is necessary before we can begin the estimation of the last two model equations. As already noted, \(r_{1a} = p_{H} r_{a} \) and \(r_{1a} = p_{H} r_{a} \). Since \(r_{1a} \) and \(r_{1a} \) are known and we now have estimates of \(p_{H} \) and \(p_{a} \), we obtain two solutions for \(r_{ao} \). These are not the same, so we strike a simple average of the two and follow an analogous procedure to secure correlations of \(G \) and \(H \) with all the predetermined variables.

By this sequence of estimates and approximations, we have arrived at a complete correlation matrix for variables \(G, H, \) and \(X_{a}, \ldots, X_{f} \). Coefficients in the last two equations of Model IV are now estimated by the two-stage least-squares procedure already illustrated for Model II. As noted in that illustration, when we come to calculate the paths involving the disturbances \(p_{a} \) and \(p_{H} \); and the correlation between the disturbances, \(r_{ab} \), we must base our calculations on the correlations implied by the model rather than on the correlations with which we began to estimate the coefficients of the model. To obtain the implied correlations involves more calculations. We have, for example,

\[
\begin{align*}
 r_{ab} &= p_{ab} + p_{a} r_{ab} + p_{a} r_{ab} + p_{ab} r_{ab} \\
 &= p_{ab} + p_{a} r_{ab} + p_{a} r_{ab} + p_{ab} r_{ab}
\end{align*}
\]

and

\[
\begin{align*}
 r_{ab} &= p_{ab} + p_{a} r_{ab} + p_{a} r_{ab} + p_{ab} r_{ab} \\
 &= p_{ab} + p_{a} r_{ab} + p_{a} r_{ab} + p_{ab} r_{ab}
\end{align*}
\]

These are of the form \(r_{ab} = k_{1} + p_{a} r_{ab} \) and \(r_{ab} = k_{1} + p_{a} r_{ab} \). Hence we may solve for the two implied correlations, obtaining

\[
\begin{align*}
 r_{ab} &= \frac{k_{1} + p_{a} r_{ab}}{1 - p_{a} r_{ab}} \\
 r_{ab} &= \frac{k_{1} + p_{a} r_{ab}}{1 - p_{a} r_{ab}}
\end{align*}
\]

Since two of the predetermined variables appear in both model equations (while four appear in only one equation each), four of the implied correlations \(r_{ao}, r_{ao}, r_{aw}, \) and \(r_{aw} \) are constrained to equal the corresponding initial values. For the remainder, the discrepancies are mostly minor. The tabulation below shows the implied correlations (with their deviations from initial correlations in parentheses):

\[
\begin{align*}
 r_{ab} &= .3096 (.0016), r_{aw} = .3059 (.0014), \\
 r_{ao} &= .5145 (.0011), r_{aw} = .6333 (.0045), \\
 r_{ao} &= .3498 (.0210), r_{ao} = .3380 (.0052), \\
 r_{aw} &= .1418 (.0492), r_{aw} = .1296 (.0079).
\end{align*}
\]

The modest values of these discrepancies suggest that the model adequately takes account of the configuration of the data. Moreover, the reasonableness of the estimated paths and the small size of the correlation between disturbances \(r_{ab} = -.075 \) reinforce our satisfaction with the results. We may, finally, consider what correlations among all the observed variables are implied by the model as a whole. Formulas like \(r_{1a} = p_{1a} r_{1a} \) are used to compute correlations between aspiration variables and predetermined variables; formulas for the implied intercorrelations of the aspiration variables, neglecting correlations of their residuals, have already been given. A presentation of all implied correlations and their deviations from observed correlations is made in Table 2. These deviations are
analogous to the “residual correlations” obtained after extracting the “meaningful” factors in a factor analysis. They may be attributed to sampling error, if this seems reasonable. If not, they afford material for an investigator who wishes to essay a more convincing interpretation than that afforded by Model IV.

CONCERNING THE REDUCED FORM

In all the discussion thus far we have considered only what the econometricians call the “structural form” of the models. For some purposes, it is instructive also to pay attention to the “reduced form.” Returning to the last two equations of Model IV, which constitute the substance of that model, let us substitute the expression for H given in the last equation into the next-to-last equation. We obtain a result that can be put into the form

$$ H = \beta_aX_a + \beta_bX_b + \beta_cX_c + \beta_dX_d + \beta_eX_e + \beta_fX_f + \beta_gX_g + \beta_hX_h. $$

Let $\gamma = 1/(1 - \rho_{PHPH})$. Then the constants in the two foregoing reduced-form equations are defined as follows:

$$ a_0 = \rho_{a_0} \gamma, \quad a_1 = \rho_{a_1} \gamma, \quad a_2 = (\rho_{a_2} + \rho_{a_2PH}) \gamma, \quad a_3 = \rho_{a_3PH} \gamma, \quad a_4 = \rho_{a_4PH} \gamma, \quad a_5 = \rho_{a_5PH} \gamma, \quad a_6 = \rho_{a_6PH} \gamma. $$

Similarly, substituting the fifth equation into the sixth, we obtain

$$ G = a_0X_0 + a_1X_1 + a_2X_2 + a_3X_3 + a_4X_4. $$

TABLE 2

CORRELATIONS IMPLIED BY MODEL IV BETWEEN ASPIRATION VARIABLES AND OTHER VARIABLES IN THE MODEL

<table>
<thead>
<tr>
<th>Variable</th>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respondent:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental aspiration (X_1)</td>
<td>.2401 (.0264)</td>
<td>.2495 (.0247)</td>
<td>.1107 (.0017)</td>
<td>.0972 (.0133)</td>
</tr>
<tr>
<td>Intelligence (X_2)</td>
<td>.3989 (.0116)</td>
<td>.4146 (.0103)</td>
<td>.2887 (.0016)</td>
<td>.2535 (.0063)</td>
</tr>
<tr>
<td>Family SES (X_3)</td>
<td>.3567 (.0237)</td>
<td>.3707 (.0340)</td>
<td>.3114 (.0060)</td>
<td>.2734 (.0052)</td>
</tr>
<tr>
<td>Friend:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family SES (X_4)</td>
<td>.2623 (.0307)</td>
<td>.2726 (.0319)</td>
<td>.4106 (.0001)</td>
<td>.3605 (.0002)</td>
</tr>
<tr>
<td>Intelligence (X_5)</td>
<td>.2712 (.0283)</td>
<td>.2819 (.0044)</td>
<td>.5409 (.0218)</td>
<td>.4749 (.0258)</td>
</tr>
<tr>
<td>Parental aspiration (X_6)</td>
<td>.1100 (.0340)</td>
<td>.1143 (.0441)</td>
<td>.2613 (.0171)</td>
<td>.2294 (.0306)</td>
</tr>
<tr>
<td>Respondent:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational aspiration (Y_1)</td>
<td></td>
<td>.6247*</td>
<td>.3738 (.0469)</td>
<td>.3283 (.0933)</td>
</tr>
<tr>
<td>Educational aspiration (Y_2)</td>
<td></td>
<td></td>
<td>.3885 (.0216)</td>
<td>.3412 (.0137)</td>
</tr>
<tr>
<td>Friend:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational aspiration (Y_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational aspiration (Y_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note—Deviations from observed correlations are in parentheses.

*Model permits no deviation of implied from observed correlation. (Deviations from the other observed intercorrelations among the Y's occur if residual intercorrelations are neglected.)
correlated with the predetermined variables, the coefficients a_0, \ldots, a_t can be estimated by the ordinary regression of G on X_0, \ldots, X_t and the β's from the regression of H on the same six variables. (These regressions have already been computed for the first stage of the two-stage estimation procedure.)

It may be observed that $a_d/\beta_d = \rho_{0H}$; but $a_e/\beta_e = \rho_{0H}$, also. If we use our first-stage regression estimates of the a's and β's, the former implies $\rho_{0H} = .2891$ while the second yields $-.0838$. Similarly, estimating ρ_{0H} from β_0/a_0 and β_0/a_0 yields two inconsistent answers, .2338 and .1722, respectively. These inconsistencies present the problem of overidentification in an especially striking fashion. Had the equations in Model IV both been just identified, such inconsistencies would not have arisen. Indeed, the method of "indirect least squares," alluded to earlier as a technique for estimating coefficients in a just-identified system, consists precisely in estimating the reduced-form coefficients first and then deriving therefrom the estimates of coefficients in the structural equations of the model.

Although the overidentification means that the reduced-form coefficients do not yield unique estimates of the structural coefficients, we may still be interested in the reduced form of the model. To begin with, having obtained the structural coefficients by the two-stage procedure, we may compute the implied values of the reduced-form coefficients from them. Table 3 shows the reduced-form coefficients of Model IV, both as estimated from the first-stage regressions and as computed from the structural coefficients. For the most part, the discrepancies appear small, although it is these

TABLE 3

REDUCED-FORM COEFFICIENTS FOR MODEL IV

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Symbol</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Set (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>H</td>
<td>G</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respondent:</td>
<td></td>
</tr>
<tr>
<td>Intelligence</td>
<td>X_s</td>
<td>.3378</td>
<td>.0790</td>
<td>.3418</td>
<td>.0725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental aspiration</td>
<td>X_s</td>
<td>.2199</td>
<td>.0379</td>
<td>.2169</td>
<td>.0460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family SES</td>
<td>X_s</td>
<td>.3056</td>
<td>.1426</td>
<td>.2919</td>
<td>.1396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Friend:</td>
<td></td>
</tr>
<tr>
<td>Intelligence</td>
<td>X_s</td>
<td>.1291</td>
<td>.4464</td>
<td>.0913</td>
<td>.4399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental aspiration</td>
<td>X_s</td>
<td>-.0159</td>
<td>.1900</td>
<td>.0418</td>
<td>.2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family SES</td>
<td>X_s</td>
<td>.1499</td>
<td>.3034</td>
<td>.1585</td>
<td>.2942</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note.—Set (A), as estimated in first-stage regression; set (B), as computed from structural coefficients estimated in two-stage regression.

very discrepancies that preclude the indirect least-squares approach.

Apart from computation and estimation, the reduced-form coefficients, as defined in terms of the structural coefficients, have some conceptual or interpretive significance, for their definitions indicate something of the "mechanisms" through which the predetermined variables influence the endogenous variables. Consider

$$a_s = \frac{\rho_{0s}}{1 - \rho_{0H}\rho_{0a}} = \frac{.3267}{.9560} = .34.$$

The form of this expression indicates that X_s influences G directly, via ρ_{0a}, and that this influence is slightly amplified, to the
extent of $1/(.956) = 1.046$, by the reciprocal action of respondent's and friend's "ambition." A more complex mechanism is suggested by

$$a = \frac{\rho_{oa} + \rho_{ohn}}{1 - \rho_{ohn}}$$

$$= \frac{.2749 + (.2074)(.0785)}{.956} = .29.$$

In this case, there is not only the direct effect, ρ_{oa}, but also a compound or indirect effect of X_{oa} on G, via H, as represented by $\rho_{ohn} = .0163$, while the sum of the two is amplified by the reciprocation. The third type of mechanism is exemplified by

$$a = \frac{\rho_{ohn}}{1 - \rho_{ohn}}$$

$$= \frac{(.2074)(.4205)}{.956} = .09.$$

Here the influence of X_{oa} on G is entirely indirect, via H, with the same factor of amplification as in the previous examples. Indeed, it is the assumption that some of the predetermined variables influence the endogenous variables only indirectly that permits the model to be identified in the first place. (Econometricians somewhat confusingly call both just-identified and over-identified models or equations "identified.")

The formulas for the reduced-form coefficients, of course, merely reflect the assumptions built into the model. But if the assumptions are accepted, it is of interest to include in the interpretation some evaluation of the relative importance of the various mechanisms that the model implicitly postulates.

EVALUATION AND DISCUSSION

Closing remarks are confined to comments on the rationale and results of Model IV. Some deficiencies of the earlier models have already been mentioned, and others that merit emphasis are shared by them with Model IV.

To recapitulate, the study was concerned with the hypothesis that adolescent boys influence each other in forming their occupational and educational aspirations. The earlier analysis of Haller and Butterworth had demonstrated that some correlation between the aspirations of boys in a peer group remained even if the groups were confined to those homogeneous on background factors presumed to give rise to aspirations. The present analysis accepts a different task: not that of hypothesis testing, but that of *estimation* in the context of an *explicit causal interpretation* of the influences on aspiration. The estimates are meaningful only to the extent that the initial study design is adequate to the purposes of identifying determinants of aspiration and of ascertaining the patterns of homophily operative in a relevant population.

The first question, then, is posed by a limitation on the design noted by the authors of the original study: with these data we cannot rule out the possibility that friendships are formed partially on the basis of common interests in educational and occupational goals. If this be the case, then all the estimates attempted here are beside the point, because we have treated aspirations as outcomes of the background characteristics of the respondent and his friend (treated as "predetermined variables") and of their respective influences on each other. As was also noted in the earlier paper, a longitudinal design would be required to eliminate the possibility of assortment on the basis of aspirations (although it is not entirely clear how the requisite causal inferences would be made, even if the design were longitudinal). The results here are, therefore, in the same provisional status as those of the predecessor study. If assortment on the basis of aspirations proves to be important, our estimates of the mutual influence of friends on each other's aspirations are not merely wrong; they become irrelevant.

Supposing, however, that friendship assortment occurs primarily on the basis of social and personal characteristics other
than aspirations (though possibly, as the models suggest, on the basis of factors affecting aspirations); then we must reckon with the further question of whether the effects of such characteristics are adequately accounted for. Percentages of "explained" variance in the jointly dependent variables of simultaneous models are not readily computed as they are for ordinary multiple regressions. From the size of the path coefficients for the disturbances, however, we might be prone to assume that some relevant background characteristics are omitted. Still, it is not obvious what they might be, since most studies of status achievement and aspirations have focused on variables much like those used here. Strictly speaking, the disturbance in a model represents all variables that operate "accidentally" or randomly with respect to the influence of predetermined variables. Retrospective introspection certainly suggests that many accidental experiences, not necessarily shared with one's best friend, may have an impact on the formation of aspirations. Again, the results must be left in provisional form: if further investigation discloses major background factors including high or low aspirations, and if there is significant homophily with respect to these factors, incorporation of such factors into constructions like Model IV may well result in drastic reduction of the paths representing reciprocal influence of respondent's and friend's aspirations.

Looking more specifically at the results with Model IV, we may note that some of the asymmetry between respondent and friend that seemed implausible in Models I and II has disappeared in the more elaborate model. Except that friend's "ambition" seems to be more heavily influenced by his intelligence than is the case for respondent's "ambition," the results for the two boys are much alike. It is only a coincidence that $\rho_{OH} = \rho_{HO}$ when the results are rounded to two decimal places. But either of these coefficients at a value of roughly .2 seems like a reasonable estimate of the influence of a friend's aspirations upon one's own. This estimate does not differ greatly from those for Models I and III, but is on the conservative side by comparison with them. Recalling that the correlation between H and G, the two constructed "ambition" variables, came out as .56, the .21 value for ρ_{OH} and ρ_{HO} suggests that a significant part of the explanation for resemblance between aspirations of peers is due to mutual influence, but a goodly part of it is also due to the way in which peers come to associate (assortatively with respect to background characteristics) in the first place—bearing in mind the reservation already stated concerning the cogency of this interpretation.

The result that ρ_{OH} is very nearly the same as ρ_{HO} may be regarded as somewhat anomalous. In Model III the two reciprocal paths were forced to be equal, but in Models I and II, where this was not the case, the influence of friend on ego appeared to be somewhat stronger than that of ego on friend. This is perhaps what we should expect, given that the friendship pairs analyzed here are not defined by mutual choices but by the unilateral choice of the respondent. We know (or can presume) that friend is a significant other for ego, but we cannot be sure that the converse is true. Clearly, the whole matter of the extent to which an individual's dispositions are influenced by significant others should be further explored in research designed to include measures of degree of significance of those others, estimated independently of the dependent variable under study.

Of the discrepancies between observed correlations and those implied by the model, only the one of $-.09$ for r_{16}, between the two friends' occupational aspirations, seems interesting (this discrepancy appears in a different guise as $r_{we} = .22$). The model may seem to fail to represent quite adequately some specific aspect of similarity of friends' occupational choices. It need not be argued, however, that the model underestimates mutual influence of friends' occu-
than aspirations (though possibly, as the models suggest, on the basis of factors affecting aspirations); then we must reckon with the further question of whether the effects of such characteristics are adequately accounted for. Percentages of "explained" variance in the jointly dependent variables of simultaneous models are not readily computed as they are for ordinary multiple regressions. From the size of the path coefficients for the disturbances; however, we might be prone to assume that some relevant background characteristics are omitted. Still, it is not obvious what they might be, since most studies of status achievement and aspirations have focused on variables much like those used here. Strictly speaking, the disturbance in a model represents all variables that operate "accidentally" or randomly with respect to the influence of predetermined variables. Retrospective introspection certainly suggests that many accidental experiences, not necessarily shared with one's best friend, may have an impact on the formation of aspirations. Again, the results must be left in provisional form: if further investigation discloses major background factors including high or low aspirations, and if there is significant homophily with respect to these factors, incorporation of such factors into constructions like Model IV may well result in drastic reduction of the paths representing reciprocal influence of respondent's and friend's aspirations.

Looking more specifically at the results with Model IV, we may note that some of the asymmetry between respondent and friend that seemed implausible in Models I and II has disappeared in the more elaborate model. Except that friend's "ambition" seems to be more heavily influenced by his intelligence than is the case for respondent's "ambition," the results for the two boys are much alike. It is only a coincidence that $p_{GH} = p_{HG}$ when the results are rounded to two decimal places. But either of these coefficients at a value of roughly .2 seems like a reasonable estimate of the influence of a friend's aspirations upon one's own. This estimate does not differ greatly from those for Models I and III, but is on the conservative side by comparison with them. Recalling that the correlation between H and G, the two constructed "ambition" variables, came out as .56, the .21 value for p_{GH} and p_{HG} suggests that a significant part of the explanation for resemblance between aspirations of peers is due to mutual influence, but a goodly part of it is also due to the way in which peers come to associate (assortatively with respect to background characteristics) in the first place—bearing in mind the reservation already stated concerning the cogency of this interpretation.

The result that p_{GH} is very nearly the same as p_{HG} may be regarded as somewhat anomalous. In Model III the two reciprocal paths were forced to be equal, but in Models I and II, where this was not the case, the influence of friend on ego appeared to be somewhat stronger than that of ego on friend. This is perhaps what we should expect, given that the friendship pairs analyzed here are not defined by mutual choices but by the unilateral choice of the respondent. We know (or can presume) that friend is a significant other for ego, but we cannot be sure that the converse is true. Clearly, the whole matter of the extent to which an individual's dispositions are influenced by significant others should be further explored in research designed to include measures of degree of significance of those others, estimated independently of the dependent variable under study.

Of the discrepancies between observed correlations and those implied by the model, only the one of -.09 for r_{12} between the two friends' occupational aspirations, seems interesting (this discrepancy appears in a different guise as $r_{uu} = .22$). The model may seem to fail to represent quite adequately some specific aspect of similarity of friends' occupational choices. It need not be argued, however, that the model underestimates mutual influence of friends' occu-
pational aspirations. If friends encounter the same role models, apart from their families, this could induce some similarity in their cognitive and affective orientations to the world of work.

A final reservation will be stated, although others may well occur to the reader. The parental aspiration variable is based on the respondents' reports of their parents' attitudes. Hence this variable may well be contaminated to some degree by the dependent variables which it supposedly helps to explain. Fortunately, the study design precludes a similar contamination of the data on friend’s aspirations.

The reader may well be appalled at all the apparatus brought into play in an attempt to demonstrate the reasonableness of what he already knew—even though he has been privileged to witness only a small part of the trial and error going into the construction of Model IV. The rejoinder to such a possible criticism would surely be that if a hypothesis is worth considering at all, it should be worthwhile to do some hard work to estimate its significance. On the purely conceptual level, it may suffice to recognize peer-group influence on aspiration as an actual process and to reason from that in a qualitative way to some of its consequences. Ultimately, however, we shall want to know, of the factors and processes that operate in the real world, which ones do how much of the work. Constructions like those exhibited in this paper not only offer one approach to the rendering of relevant estimates, but also present interpretations in such a form that their weaknesses—and those of the theories giving rise to them—are fairly evident. If the results of more of our research could be cast into this form, we would begin to understand better how much we do and do not know.

University of Michigan
University of Wisconsin
and
University of Wisconsin