Metric Multidimensional Scaling
(MDS):
Analyzing Distance Matrices

Hervé Abdi!

1 Overview

Metric multidimensional scaling (MDS) transforms a distance ma-
trix into a set of coordinates such that the (Euclidean) distances
derived from these coordinates approximate as well as possible
the original distances. The basic idea of MDS is to transform the
distance matrix into a cross-product matrix and then to find its
eigen-decomposition which gives a principal component analysis
(pca). Like PcA, MDS can be used with supplementary or illustra-
tive elements which are projected onto the dimensions after they
have been computed.

2 An example

The example is derived from O’Toole, Jiang, Abdi, and Haxby (2005),
in which the authors used a combination of principal component
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analysis and neural networks to analyze brain imaging data. In this
study 6 subjects were scanned using fMRI when they were watch-
ing pictures from 8 categories (faces, houses, cats, chairs, shoes,
scissors, bottles and scrambled images). The authors computed
for each subject a distance matrix corresponding to how well they
could predict the type of pictures that this subject was watching
from his/her brain scans. The distance used was d’ (see entry)
which expresses the discriminability between categories.

O’Toole et al., give two distance matrices. The first one is the
average distance matrix computed from the brain scans of all 6
subjects. The authors also give a distance matrix derived directly
from the pictures watched by the subjects. The authors computed
this distance matrix with the same algorithm that they used for the
brain scans, they just substituted images to brain scans.

We will use these two matrices to review the basic of multi-
dimensional scaling: namely how to transform a distance matrix
into a cross-product matrix and how to project a set of supplemen-
tary observations onto the space obtained by the original analysis.

3 Multidimensional Scaling:
Eigen-analysis of a distance matrix

PcA is obtained by performing the eigen-decomposition of a ma-
trix. This matrix can be a correlation matrix (i.e., the variables to
be analyzed are centered and normalized), a covariance matrix
(i.e.,, the variables are centered but not normalized), or a cross-
product matrix (i.e., the variables are neither centered nor nor-
malized). A distance matrix cannot be analyzed directly using the
eigen-decomposition (because distance matrices are not positive
semi-definite matrices), but it can be transformed into an equiva-
lent cross-product matrix which can then be analyzed.
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3.1 Transforming a distance matrix into
a cross-product matrix

In order to transform a distance matrix into a cross-product ma-
trix, we start from the observation that the scalar product between
two vectors can easily be transformed into a distance (the scalar
product between vectors corresponds to a cross-product matrix).
Let us start with some definitions. Suppose that a and b are two
vectors with I elements, the Euclidean distance between these two
vectors is computed as

d*@b)=(a-b) (a-b). o))

This distance can be rewritten in order to isolate the scalar prod-
uct between vectors a and b:

d*(a,b)=(a-b)"(a—b)=a'a+b'b-2x(@'b), )

where a'b is the scalar product between a and b.

If the data are stored into an I by J data matrix denoted X (where
I observations are described by J variables), the between observa-
tions cross product matrix is then obtained as

S =X x X", 3)
IxI Ix] JxI
A distance matrix can be computed directly from the cross-product

matrix as

D=s1'+1s'-28. @)
IxI Ix1xI Ix1xI IxI

(Note that the elements of D gives the squared Euclidean distance
between rows of S)

This equation shows that an Euclidean distance matrix can be
computed from a cross-product matrix. In order to perform MDS
on a set of data, the main idea is to “revert" Equation 4 in order
to obtain a cross-product matrix from a distance matrix. There
is one problem when implementing this idea, namely that differ-
ent cross-product matrices can give the same distance. This can
happen because distances are invariant for any change of origin.
Therefore, in order to revert the equation we need to impose an
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origin for the computation of the distance. An obvious choice is
to choose the origin of the distance as the center of gravity of the
dimensions. With this constraint, the cross-product matrix is ob-
tained as follows.

First define a mass vector denoted m whose I elements give
the mass of the I rows of matrix D. These elements are all positive
and their sum is equal to one:

m' 1 =1. 5)
1x Ix1
When all the rows have equal importance, each element is equal
to 1.
Second, define an I x I centering matrix denoted = (read “big
Xi”) equal to

E=1-1m'. (6)
Ix]1 IxI Ix1xI

Finally, the cross-product matrix is obtained from matrix D as:

S =_l=p=T. @)

IxI

D=

The eigen-decomposition of this matrix gives
S=UAUT 8)
with
U'U=IandA diagonal matrix of eigenvalues. 9)

(see appendix for a proof).
The scores (i.e., the projection of the rows on the principal com-
ponents of the analysis of S) are obtained as

F=M"2UA? (with M = diag {m}) (10)

The scores have the properties that their variance is equal to the
eigenvalues:
FTMF=A. (11)



Metric Multidimensional Scaling (MDS)

Hervé Abdi

00°0 05’1 9¢’€ (A% L6°€ LT'E (AR €L'E pa[quieIds

051 00°0 60°¢ 9¢’€ 16°¢ 96'1 807 L8€E oMog
9¢’€ 60°¢C 00°0 gg'e 68°¢C 18°¢ (AN L6'E SI0SSIOS
¢Sy 9¢’€ gg€ 000 8¢ ¢6'¢C (AN (A 204s
L6°€ 16°¢ 68°¢C 8¢ 000 191 (AN 80'% 1reyd
LT'E 96’1 18°¢ ¢6'¢C 191 000 a8'¢c 80V 1eD
(A7 80V (A% (A4 (A4 a8'¢c 000 (AR 9SNoH
€L’E L8'E L6°€ (AN 807 807 (A4 000 SRICG|
poquierds 9[1og SIOSSIOS 20ysS Ireydn 1eD 9SNOH a0eq]

'5109[qns ay1 Aq payoiem saSewl sy} uodn paseq sa1i0Fa3ed
US9MISq UOIIRUIWILIDSIP Sy} 40} paulelqo p dy3 senI xuiew siy] *(GO0g) /e 79 9|00] O WoJy Xujew p 9y :Z d[qeL

000 20°¢ G1'¢C 8€'C 20°¢ 88°C 29°¢ 80°¢ pa[qureIds
2L0°¢ 000 611 6’1 €1 1€¢ 68°C (A4 smog
G1'¢e 611 000 I4at qq'1 60°C 69°C 8G°¢C SI0SSIOS
8€C 6’1 14t 000 eL'1 44 98¢ L9°¢C saoys
L0°¢ 1A qa'1 €L'1 00°0 81°¢C 81°¢C 00°€ Iregqp)
88°C 1e¢ 60°¢C 44 81°¢C 00°0 6€°€ 6L°T 1199)
¢9°¢ 68°¢C 69°¢C 98¢ 81°¢C 6€€ 00°0 LV'€E 9SNOH
80°€ (A4 8G°¢C 29°C 00°€ 6L°1 LV'E 000 SR
polquens  amoyg SIOSSIOG J0ySs meyD 1D 9sSnoy ER]eR|

"(193[qns Jad 7) so|qel eiep g1 SuiSesone Aq psulelqo sie elep 9SSy "Sueds uledq syl uodn psseq sslio08s1ed
U99MISq UOIJBUIWLIDSIP Sy 40} pauleiqo p ayl senId xuiew siy] *(GO0g) /e 78 9|00] O WoJy Xujew p ay]| :T d[qeL



Metric Multidimensional Scaling (MDS)

Hervé Abdi:

‘(z pue T ss|qe] wouj sduelsi]) aoeds s309[qns ay1 ur syusws|d Asejuswsa|ddns se s|qel
souelsip a3ewn ayy jo uoidaloid (q) s|qe1 soueisip s,s109lqns ayy jo 3uljeds jeuoisuswipnin|y (e) :1 a3y

q

%T¢C =1

e




Hervé Abdi: Metric Multidimensional Scaling (MDS)

3.2 Example

To illustrate the transformation of the distance matrix, we will use
the distance matrix derived from the brain scans given in Table 1:

[ 0.00 3.47 1.79 3.00 2.67 2.58 2.22 3.08 |
3.47 0.00 3.39 218 2.86 2.69 2.89 2.62
1.79 3.39 0.00 2.18 2.34 2.09 231 2.88

D= 3.00 2.18 2.18 0.00 1.73 1.55 1.23 2.07 12
| 267 286 234 1.73 000 1.44 129 238 |° (12)

258 269 2.09 155 1.44 0.00 1.19 2.15

222 289 231 123 1.29 1.19 0.00 2.07

| 3.08 2.62 2.88 2.07 238 215 2.07 0.00 |

The elements of the mass vector m are all equal to 1;

m' =[125 .125 .125 .125 .125 .125 .125 .125]. (13)

The centering matrix is equal to:

[ 875 -.125 -.125 -.125 -.125 -.125 —-.125 —.125]
-.125 875 —-.125 -.125 -.125 -.125 -.125 -.125
-.125 -.125 875 -.125 -.125 -.125 -.125 -.125
-.125 -.125 -.125 875 -.125 -.125 -.125 -.125

8 -.125 -.125 -.125 -.125 875 —-.125 -—-.125 -—.125
-.125 -125 -.125 -.125 -.125 875 —-.125 -—.125
-.125 -.125 -.125 -.125 -.125 -.125 875 —.125

[ -.125 —-.125 -—.125 -.125 -.125 -.125 -.125 .875

The cross product matrix is then equal to

1.34 -0.31 0.34 -0.46 -0.25 -0.26 -0.12 -0.29 ]
-0.31 1.51 -0.38 0.03 -0.26 -0.24 -0.37 0.02
0.34 -0.38 1.12 -0.16 -0.19 -0.14 -0.27 -0.31
—0.46 0.03 -0.16 0.74 -0.08 -0.05 0.07 -0.09
-0.25 -0.26 -0.19 -0.08 0.83 0.05 0.09 -0.20
-0.26 -0.24 -0.14 -0.05 0.05 0.71 0.08 -0.15
-0.12 -037 -0.27 0.07 0.09 0.08 0.65 -0.13
| —0.29 0.02 -031 -0.09 -0.20 -0.15 -0.13 1.15 |
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The eigen-decomposition of S gives

0.60 -0.36 -0.10 0.48 -0.23 0.02 0.30 ]
-0.52 -0.64 036 0.14 0.10 -0.06 -0.18
0.48 -0.17 0.10 -0.67 0.24 0.04 -0.30
U= -0.23 0.16 0.20 -0.38 -0.54 0.29 0.49 14
— | -0.02 0.39 0.19 0.28 0.61 0.47 0.14 (14)
-0.03 0.32 0.11 -0.00 0.14 -0.83 0.23
0.00 0.38 0.02 0.25 -0.43 0.04 -0.69

| -0.28 -0.08 -0.87 -0.09 0.11 0.04 0.02 ]

and

[ 2.22 0 0 0 0 0 0]
0 1.72 0 0 0 0 0
0 0 1.23 0 0 0 0

A= 0 0 0 100 0 0 0 (15)

0 0 0 0 0.79 0 0
0 0 0 0 0 0.69 0
0 0 0 0 0 0 039 |

As in PCA, the eigenvalues are often transformed into percentage

of explained variance (or inertia) in order to make their interpreta-

tion easier. Here, for example, we find that the first dimension “ex-

plains” 28% of the variance of the distances (i.e., ﬁ =.28).
We obtain the following matrix of scores.

253 -135 -0.30 1.36 -0.58 0.04 0.53 ]
-2.19 -2.37 1.13 0.39 0.24 -0.15 -0.32
2.04 -0.63 0.32 -1.90 0.61 0.10 -0.52
-0.97 0.61 0.62 -1.09 -1.35 0.68 0.86
-0.10 1.44 0.59 0.81 1.53 1.10 0.25
-0.13 1.18 0.33 -0.00 0.35 -1.96 0.40
0.02 1.41 0.05 0.70 -1.09 0.09 -1.22
| -1.20 -0.29 -2.74 -0.27 0.28 0.10 0.03 ]

Figure 1a displays the projection of the categories on the first
two dimensions. The first dimension explains 28% of the variance
of the distance, it can be interpreted as the opposition of the face
and cat categories to the house category (these categories are the
ones most easily discriminated in the scans). The second dimen-
sion, which explains 21% of the variance, separates the small ob-
jects from the other categories.
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3.3 Multidimensional scaling:
Supplementary elements

After we have computed the MDS solution, it is possible to project
supplementary or illustrative elements onto this solution. To illus-
trate this procedure, we will project the distance matrix obtained
from the pictures (see Table 2) onto the space defined by the anal-
ysis of the brain scans.

The number of supplementary elements is denoted by I5p. For
each supplementary elements, we need the values of its distances
to all the I active elements. We can store these distances in an
I x Isyp supplementary distance matrix denoted Dgyp. So, for our
example, we have:

[ 0.00 4.52 4.08 4.08 4.52 3.97 3.87 3.73 ]
452 000 2.85 4.52 4.52 4.52 4.08 4.52
4.08 285 0.00 161 292 281 196 3.17
4.08 452 1.61 0.00 2.82 2.89 291 3.97
452 452 292 282 0.00 3.55 3.26 4.52
3.97 452 281 289 3.55 0.00 2.09 3.26
3.87 4.08 196 291 3.26 2.09 0.00 1.50

| 3.73 4.52 3.17 3.97 4.,52 3.26 1.50 0.00

Dsup = (16)

P

The first step is to transform Dy into a cross-product matrix
denoted Sgyp. This is done by first computing the difference for
each supplementary column and the average distance vector and
then centering the rows with the same centering matrix that was
used previously to transform the distance of the active elements.
Specifically, the supplementary cross-product matrix is obtained
as:

Ssup =~ 32 (Dsup ~ D1 (17)

(where 1is an Isp by 1 vector of ones; note, also, that when Dy, =
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D, Equation 17 reduces to Equation 7). For our example, this gives:

1.97 -0.24 -0.66 -0.45 -0.46 -0.37 -0.54 -0.15 ]
-0.21 210 0.04 -0.58 -0.38 -0.57 -0.56 -0.47
-0.19 0.48 1.27 068 023 0.09 0.31 0.01
S. - -0.38 -0.55 0.27 1.29 0.09 -0.13 -0.36 -0.58

SUP T —0.55 -0.50 -0.33 -0.07 1.55 —0.42 -0.49 -0.80
-0.33 -0.56 -0.34 -0.17 -0.29 1.29 0.03 -0.24
-032 -037 005 -0.21 -0.18 0.22 1.05 0.61

0.01 -0.34 -0.30 -0.49 -0.55 -0.12 0.55 1.61 |

(18)

The next step is to project the matrix Sq,, onto the space de-

fined by the analysis of the active distance matrix. We denote by

Fsyp the matrix of projection of the supplementary elements. Its

computational formula is obtained by first combining Equations
10 and 8 in order to get

F=STM :UA?, (19)
and then substituting Sg,p for S and simplifying. This gives
Foup = SeupM 2UA ™2 =S] FA™!. (20)

For our example, this equation gives the following values:

248 -227 -129 269 -1.78 -0.19 2.57 ]
-144 -413 219 -0.40 130 -0.23 -3.66
0.46 -033 1.08 -3.73 0.04 0.80 -2.79
Foo = 0.40 110 139 -3.59 -1.63 1.72 2.23
sup 027 186 1.76 -0.03 3.17 335 0.80
029 173 -0.06 -091 -0.17 -4.32 -0.09
0.11 134 -190 -095 -1.10 -0.88 -5.03
| —-0.27 -0.05 -4.71 -0.43 -0.97 -0.77 -3.70

21)
Figure 1b displays the projection of the supplementary cate-
gories on the first two dimensions. Comparing plots a and b shows
that an analysis of the pictures reveals a general map very similar
to the analysis of the brain scans with only one major difference:
The cat category for the images moves to the center of the space.
This suggests that the cat category is interpreted by the subjects as
being face-like (i.e., “cats have faces").

10
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4 Analyzing non-metric data

Metric MDS is adequate only when dealing with distances (see To-
gerson, 1958). In order to accommodate weaker measurements
(called dissimilarities) non-metric MDS is adequate. It derives an
Euclidean distance approximation using only the ordinal informa-
tion from the data (Shepard, 1966; for a recent thorough review,
see Borg & Groenen, 1997).

Appendix: Proof

We start with an I x I distance matrix D, and an I x 1 vector of mass
(whose elements are all positive or zero and whose sum is equal to
1) denoted m and such that

m 1 =1. (22)

The centering matrix is equal to

E=1-1m'. (23)

IxI IxI Ix1xI

We want to show that the following cross-product matrix
l1=DE"’, (24)

will give back the original distance matrix when the distance ma-
trix is computed as:

D=s1'+1s'-28S . (25)
IxI Ix1xI Ix1xI IxI
In order to do so, we need to choose an origin for the coordinates
(because several coordinates systems will give the same distance
matrix). A natural choice is to assume that the data are centered
(i.e., the mean of each original variable is equal to zero). There we
assume that the mean vector, denoted ¢ computed as:

c =X"m, (26)
Jx1 Jx Ix1

11
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(for some data matrix X). Because the origin of the space is located
at the center of gravity, its coordinates are equal to ¢ = 0. The cross-
product matric can therefore be computed as

T
S :(X—l cT)(X—l cT)
Ix1I Ix] Ix1x] Ix] Ix1x]

:(X—l cT)(XT—c 1T). 27)
Ix] Ix1x] IxI Jx1xI
First, we assume that there exists a matrix denoted S such that

Equation 25) is satisfied. Then we plug Equation 25 into Equa-
tion 24, develop and simplify in order to get

1'=2T-lz1s’=2T +=28=T . (28)

ED=E" = -

[11

= 1
=s >

D=~

1
2

Then we show that the terms Z (s17) 2T and E (1s") £T are null
because::

(slT) =T =s1T (I - lmT)T
=s1" (I - mlT)
=s1"—s1"'m1" (but from Equation 22: 1"m= 1)
=s1"—s1"
=0 . (29)

IxI

The last thing to show now is that the term ZSZ is equal to S.
This is shown by developing:

=Sz = (1— 1mT)s(1—m1T)

=S-Sml' - Im'S+1m'Smi1". (30)
Because

(XT - clT) m=X"m-cl'm (cf. Equations 26 and 22)

12
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=0, (31)
we get (cf. Equation 27):
sm=(Xx-1c")(X"-c1"jm=0 (32)
and, therefore, Equation 30 becomes

S=T =83, (33)

[1]

which lead to
EDE' =8, (34)

D=

which completes the proof.
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