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LONGITUDINAL NON-EUCLIDEAN NETWORKS: 
APPLYING GALILEO 

George A, BARNETT * 
Stare Uniuersiy of Nen York at Buffdo 

Ronald E. RICE ** 
Umoersrt~ of Sotrthern Califonm 

This article dlscusses the theoretical utility of using a non-Euclidean spatial manifold when 
describing social networks. It proposes that a variant of metric MDS, the Galdeo System. can be 
particularly useful m analyzing social networks and their changes over time, partially because it 
does not impose Euclidean assumptions on the data. Two sets of longitudinal network data are 
examined wth Galileo. One is the American air traffic network from 1968-81. The other is ten 
groups engaged in a computer conference over a 24 month period. In both cases. the results 
indicate that a Riemannian spatial manifold is required to describe the network structure. 
Consistent theoretically valid results based upon the non-Euclidean components of spatial mani- 
fold are obtained. Further, they could be readily explained by exogenous factors. The implications 
of these results for network analysis are discussed. 

1. Introduction 

Multidimensional scaling (MDS) is frequently used to describe social 
networks (Goldstein et al. 1966; Jones and Young 1972; Lankford 
1974; Breiger et al. 1975; Gillham and Woelfel 1977; Freeman and 
Freeman 1979; Romney and Faust 1982; Barnett 1979, 1984; Rice and 
Barnett 1985). It is only one of many network analysis methods 
currently used (Burt and Minor 1983; Knoke and Kuklinski 1982; 
Moreno 1960; Rice and Richard 1985; Rogers and Kincaid 1981). 
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Despite its great use, less than satisfactory results have been reported 
(Lankford 1974; Breiger et al. 1975). One reason for this may be the 
assumption that networks are best explained by an Euclidean spatial 
manifold. This article will argue that social network data need not be 
Euclidean, but may be Riemannian. It proposes the use of a variant of 
metric MDS, the Galileo System (Woelfel and Fink 1980) which does 
not make Euclidean assumptions. Finally, it demonstrates Galileo’s 
utility for describing longitudinal social networks, using two sets of 
data: Barnett’s (1984) data on the frequency of air traffic among 31 
American cities and Rice’s (1982) data on the communication among 
groups engaged in a computer conference. 

2. Theory 

Social networks may be conceptualized and protrayed in a variety of 
ways. One way is to portray a network as a N x N matrix S, where N 
equals the number of nodes or interacting units in the network. The 
value in each cell (s,,) is some measured attribute of the relationship or 
link between nodes i and j. This value may be the frequency of 
communication, often weighted by perceived importance. Or, the value 
may indicate distance between nodes. Distance may be a direct (per- 
haps perceived) measure, or the result of computations. 

s 
a b c 

u 0 1 1 
b 1 0 9 
c 1 9 0 

Consider the matrix S above, where s,, is a measure of network 
distance. The diagonal contains zeros because the distance between any 
node and itself is zero by definition. If matrix S were converted to 
Cartesian coordinates (through MDS) by finding the eigenvector of its 
scalar products matrix (S’S = B), one would find that the eigenroots or 
characteristics roots of B would include one negative root. The reason 
is that the triangle formed from the links of the abc triad cannot exist 
in a two-dimensional Euclidean space. 1 The abc triangle has two short 
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legs (ab and UC) and one long one (bc). As a result, the sum of the 
triangle’s angles exceeds 180”. Any set of N nodes will represent an 
Euclidean configuration if and only if the triangular inequalities rule is 
not violated for any triple of points. Thus, the triad cannot be described 
without a complex dimension (one with a negative root) to foreshorten 
the bc leg. If the values of s,, were converted to binary values 
measuring absence or presence of links (0 or l), which foreshortens the 
bc leg, the triangle becomes Euclidean - but this throws away informa- 
tion. 

Therefore, network data need not be Euclidean, i.e., at least one of 
the characteristic roots of B may be imaginary. One solution is a 
Riemann manifold represented by a coordinate system in which some 
of the dimensions are imaginary. The locations of the non-Euclidean 
relations among the nodes may be determined by Equation 1. 

d,; = d,fi + d,‘, - 2d,,d,kcos 0 (1) 

In the case where, cos 0 2 1.0, the relations may be considered 
Euclidean. Where cos 8 > 1.0, the relations among the three nodes may 
be considered non-Euclidean or Riemannian. It is from this latter case 
the negative eigenroots result (Woelfel and Barnett 1982). 

While multidimensional scaling has frequently been applied to 
analyze social networks, less than satisfactory results have been re- 
ported. One reason for this may be the failure to take imaginary 
dimensions into account. Historically, psychometricians have treated 
the variance on these dimensions as error to be removed through the 
addition of an additive constant (Messick and Abelson 1956) or ad- 
justed away by a non-metric algorithm (Kruskal 1964a,b; Shepard 
1962a,b). They assumed that social and psychological structures were 
Euclidean and that any departure from a positive semi-definite scalar 
products matrix (one with only positive values in its eigenvector), was 
caused exclusively by measurement error. Thus, imaginary dimensions 
were ignored or transformed and inadequate descriptions of sociometric 
data resulted. Additionally, the stated purpose of MDS was to identify 
an underlying structure, such as the dimensions by which a network 

’ In the example, matrix .S results in a two-dimenslonal (one real and one Imaginary) space 
because any matrix of N points may be described without the loss of informatlon by a space of 
N-l dimensions. For example, any two points may be precisely described by a line. 



\vas differentiated. This resulted ill focusing upoil only the dimensions 
\vhiclJ accounted for the greatest proportion of the variance. Other 
dimensions with less variance were removed (see, for example. Levine 
1972. on interpreting corporate interlock factors) and imaginary dimen- 
sions were ignored. Howe\.er, since the underlying dimensions are only 
orthonormal reference vectors upon which no meaning may be directly 
attributed. all dimensions should be retained for analysis, including 
those with negative eigenroots (Barn&t and Woelfel 1979). Attribution 
of meaning to the dinlensiolls may be made by regreSSillg a11 attribute 
\wtor through the space. 

Recently. paychometricians have become interested in MDS in Rie- 
n~ann space (Lindman and Caell 1978: Pieszko 1975). Griffith (1984) 
has modelled transportation networks using non-Euclidean geometries. 
However. his models are constrained by physical space which limits the 
dimensinnality to t\vo or three axes. The structure of social space ~nay 
be more con1ples. 

3. Galileo - a MDS algorithm 

One algorithm exists which allows for the analysis of all the dimensions 
in a multidi~JJrnsional nianifo~d including those Lvith negative roots. It 
is known as Galileo (Woelfel et (11. 1977; Woelfel and Fink 1980). The 
computer software t&es ratio level measurements of discrepancies 
(distances or dissimilarities), such as matrix S, and converts them to an 
adjusted scalar products matrix following Torgerson (195X). It then 
determines the eigenroots and Cartesian coordinates for all dimensions. 
real and imaginary through Jacobi’s IJJethod (Van de Geer 1971). 

Previous research with Galileo has shown that the loadings on the 
imaginary dimensions are re]iah]e both across groups and over time 
(Woelfel and Barnett 19X2). Also. theoretically valid predictions have 
been made using the imaginary dimensions. Woelfel and Burnett (1982) 
have S]J(W[J that the dinlrnsiona M’ith negative roots result 14~hen pair- 
comparisons are made with stimuli from two or more semantic domains 
or WIJ~IJ the stimuli are incongruent or produce a psychological atatc of 



imbalance. Krumhansl (1978) examined psychological non- 
Euclideanisms in geometric models and found that violations of trian- 
gular inequalities resulted when scaled points varied greatly in their 
relative density. In spaces where the points were distributed homoge- 
nously, there was a greater tendency for the space to be Euclidean. 
Similar results occur with social network data. 

One reason for performing network analysis has been clique or group 
identification. Two procedures may perform this function in conjunc- 
tion with scaling algorithms, cluster analysis or multiple discriminant 
analysis (MDA). Once the Riemann space has been obtained, the 
researcher may perform a cluster analysis to identify groupings within 
the space, or when group identification is known or hypothesized, 
MDA may be used (Jones and Young 1972). In the latter case, group 
membership may be considered the dependent variable and the dimen- 
sions (real and imaginary) the predictor variables. 

Change in network structure may be examined by repeating the 
measurement phase and transforming the data for each point in time 
into multidimensional spaces. To compare several points in time. the 
spaces are translated to a common origin and rotated to a least squares 
fit which minimizes the departure from congruence among the spaces. 
The individual spaces are not standardized. This allows one to examine 
the dilation or contraction of a social network. Change in the position 
of the nodes may be calculated by subtracting the coordinate values 
across time. From these change scores trajectories of motion can be 
determined to describe the relative changes in the structure. With these 
measured velocities (the rate of change over time) and accelerations, 
hypotheses about future network structures may be tested (Barnett 
1984; Rice and Barnett 1985). 

The ability to compare manifolds in this manner represents an 
advance over standard practices in psychometrics. A typical solution is 
to use a Procrustean rotation which first dilates or contracts the spaces 
to a common size and performs a least squares rotation to minimize 
departure from congruence (Schonemann and Carroll 1970). This pro- 
cedure is unacceptable because change in the size of the space may 
represent true change. The network may change in density or con- 
nectedness and this information would be lost by standardizing the 
volume of the network space. 

When no additional information about the relative stability of the 
nodes exists, the ordinary least squares procedure may be applied. 
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However, when the nodes’ stability or the extent to which the position 
of certain nodes has changed is known, alternative rotational al- 
gorithms exist (Woelfel et al., 1980). The least squares procedure has 
the effect of overestimating some changes while underestimating others. 
This may lead to erroneous conclusions. Alternative rotational schemes 
use theoretical or “extra” information which simplifies the apparent 
motion. Since it is independent of the coordinate values, it may be 
treated as invariant under rotation and translation of the coordinates. 

One alternative scheme rotates only the theoretically stable points to 
a least squares best fit and then incorporates the dynamic ones into the 
new coordinate system. This is similar to the procedure used in astron- 
omy where the positions of fixed stars are used to measure the motion 
of other stellar bodies. Another procedure weights the individual points, 
and then rotates to a weighted solution. One of these schemes should be 
used when manipulating the relational patterns of a node toward a 
subset of nodes. In that case, the manipulated nodes are considered 
dynamic and the unmanipulated ones are treated as theoretically stable 
reference points (Barnett 1980; Woelfel et al. 1980). 

3.2. Network indices from Galileo 

Galileo provides the dimensionality (eigenroots) for each sociomatrix, 
the locus for each node on all dimensions (real and imaginary) of the 
network’s space, and the changes in the network at adjacent points in 
time. Since it is a metric algorithm, Galileo also produces the following 
statistics which may be used to describe the networks. 

Centrality may be defined as the average distance of a node to all 
others in the network (Freeman 1979). Because MDS places the centroid 
of the nodes at the origin, the centrality of any node may be determined 
from the diagonal of the adjusted scalar products matrix. The value on 
the diagonal, b,,, represents the squared distance of node i from the 
center of the network. The greater the square root of the absolute value 
of b,,, the less central the node is in the network. * 

System connectedness has been defined by Rogers and Kincaid 
(1981 : 346) as “the degree to which members of a system are connected 
to others in the system.” The trace of sum of the eigenroots of the 

’ The absolute value of b,, is taken because b,, is negative if the dimension is imaginary. 



coordinates provides an indicator of connectedness. The smaller the 
distance, or the greater the frequency of interaction among the system’s 
nodes, the smaller this coefficient. 

Network density is defined as a ratio of the number o[ nodes to the 
volume of the space produced by scaling the social distance matrix. The 
trace may be considered a measure of the volume of the coordinate 
space. It is the sum of the squared lengths of the dimensions or 
coordinate axes (equal to the sum of the eigenroots). Density is a useful 
indicator when comparing different systems. However, because the 
number of nodes generally is constant when comparing the same 
system over time, the measures of system connectedness and network 
density for such networks produce equivalent results. 

Homogeneity of linkage among the nodes is indicated by the warp of 
the coordinate space. Warp is defined as the ratio of the real variance 
(from all dimensions with positive eigenroots) to the total variance 
(from positive and negative roots) in the space. It is a convenient 
measure of the degree to which a space is non-Euclidean. It will be 
greater than or equal to 1.0. An Euclidean space will have a warp of 1.0. 
The greater the warp, the less Euclidean and more heterogeneous the 
pattern of interaction among the nodes and the more frequently con- 
tacts go through a limited number of more central nodes. Thus, warp is 
an indicator of (though not equivalent to) network integration. Integra- 
tion is the extent to which the nodes which are linked to a focal node 
are linked together (Rogers and Kincaid 1981). A well integrated 
network will have a warp approaching 1.0. 

To demonstrate these concepts we will return to the three-node 
example presented at the beginning of this article. When the three 
nodes were entered into Galileo, the following coordinates and eigen- 
roots resulted. 

Dimension 
Node 1 2 3 

; 0.00 4.50 0.000 0.000 - 2.93 1.46 
c - 4.50 0.000 1.46 

Eigenroot 40.50 0.000 - 12.83 
Sum of roots = 27.67 

Warp = 1.46 



The nodes are arrayed in two-dimensional space. One of these 
dimensions (1) is positive and one (3) is negative. Warp is greater than 
1.0. indicative of a non-Euclidean spatial manifold. The square root of 
the diagonal of the scalar products matrix provided measures of the 
nodes’ relative centrality. or distance from the origin of the network 
space. They were 2.93. 4.26 and 4.26. As suggested earlier, node II is the 
most central. It is at the origin on dimensions 1 and 2 and 2.93 units 
from the origin on 3. Since the indicators of connectedness and density 
have meaning only relative to each other over time or when comparing 
networks they will not be discussed. 

Up to this point. the discussion has focused on the theoretical 
desirability of using a non-Euclidean MDS algorithm to describe social 
or communication networks. Any new methodology’s utility should be 
evaluated against theoretical as well as technical criteria. The following 
sections empirically demonstrate these procedures with two sets of data. 

4. Empirical examples 

The two following sections are included primarily as examples of 
applications of Galileo. Theoretical foundations and implications are 
discussed more thoroughly in the original papers. 

Data from the annual “Domestic Origin-Destination Survey of Airline 
Passenger Traffic” conductd by the U.S. Civil Aeronautics Board 
(CAB), were analyzed with Galileo. ’ Flight coupons surrendered by 
passengers upon boardin, 0 were the source of the survey data. The 
universe consisted of all coupons lifted by participating air carriers. 
Coupons with ticket serial numbers ending in zero were selected, 
resulting in a 10 percent systematic sample. 
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Table 1 
Population of 31 cities selected as nodes in air traffic analysis. a 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Atlanta 2,010,000 
Baltimore 2,166.OOO 
Boston 3.443.000 
Buffalo 1.241 .OOO 
Chicago 7,697,OOO 
Cincinnati 1.651,OOO 
Cleveland 2.830,OOO 
Columbus 1.089,OOO 
Dallas-Fort Worth 2.964,OOO 
Denver 1.615.000 
Detroit 4.606,OOO 
Fort Lauderdale-Hollywood (SCSA) 1.006,OOO 
Houston 3,086,OOO 
Indianapolis 1,162,OOO 
Kansas City 1,322,OOO 
Los Angeles 11.439.000 
Miami (without Fort Lauderdale) 1.573.000 
Milwaukee 1.566,OOO 
Minneapohs-St. Paul 2,109,OOO 
New Orleans 1 ,184,OOO 
New York City 16,065,OOO 
Philadelphia 5,530,ooo 
Phoenix 1,612,OOO 
Pittsburgh 2,261,OOO 
Portland 1,236,OOO 
San Diego 1,860,000 
San Francisco-Oakland-San Jose 4.845,OOO 
Seattle 2,084,OOO 
St. Louis 2,345,OOO 
Tampa-St. Petersburg 1.550,000 
Washington 3,045.ooo 
Total population of cities 94,092,OOO 
Total populations of U.S. 1980 225,479,OOO 

’ Sample contains 43.5% of total. See footnotes 3 and 4. 

Thirty-one cities (SMSA) with a population greater than one million 
were selected as nodes. 4 They are listed in Table 1. In 1980, these 31 
cities had a cumulative population over 94 million or 43.5 percent of 
the U.S. population. The links in the symmetric sociomatrix S were the 

4 San Antonio and Sacramento were not included. Oakland, San Jose and San Francisco were 
combined into a single node. SCSA Ft. Lauderdale was treated separately from Miami because 
of the great frequency of air traffic at its airport. 
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number of passengers outbound plus inbound (nondirectional) between 
the cities. The diagonal contained zeros. Fourteen separate socio- 
matrices were created, one for each year 1963 to 1981. 

These data are not subject to the criticism of self-report network data 
(Berger and Roloff 1980; Bernard and Killworth 1977; Bernard et al. 
1980, 1982; Nisbett and Wilson 1977). Rather than being reports of 
travel by individuals, they are objective, coming from used airline 
tickets. The nodes are cities, not individuals. Thus, the interaction 
among aggregates was examined. Danowski (1982) and Barnett (1982) 
have shown that the process of aggregating interactions to the group 
level filters out significant measurement error because individual varia- 
tion is averaged. This results in stable estimates which improve the 
ability to describe the mathematical relations among the variables of 
interest. In this case, a 10 percent sample of air traffic is sufficiently 
large to assume that random perturbations contribute little to the 
description of the network. 

These data were transformed from matrices of frequencies of interac- 
tion to social or communication distance so that the greater the 
interaction between two nodes, the closer they are in network space. 
The transformation function was 

S’=logS(K). 

K was set equal to 14,638, the value required for equivalent traces 
between the spaces produced by the physical distance between the cities 
and the air traffic. 

4.1.1. Results 
Change in connectedness. The 14 sociomatrices were transformed into 

multidimensional spaces and comparisons made using a rotation to a 
least-squares best fit which minimizes overall departure from con- 
gruence. Rather than presenting all 14 sets of coordinates and 13 
comparisons among the coordinates, only summary indicators of the 
changing relations will be reported. One is the trace of the coordinates 
matrix, an indicator of network connectedness. The smaller the value, 
the greater the connectedness. The traces for the 14 years are presented 
in Table 2, and are plotted in Figure 1. 

To describe the change in connectedness, these 14 values were 
plotted against time. Connectedness increased continuously until the 
last two years, when it decreased. 
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Table 2 
Resultant coefficients, observed traces, predicted values and residuals using air traffic data. a 

T Observed Exponential Residual Polynomial Residual 
trace decay predicted 

predicated 

1 67,730 66,729 
2 50,699 53,931 
3 48,657 48,288 
4 48,331 45,800 
5 46,718 44,703 
6 45,817 44,220 
7 47,981 44,007 
8 45,157 43,913 
9 44,323 43,871 

10 43,421 43,853 
11 41,587 43,845 
12 40,507 43,841 
13 41,567 43,840 
14 42,178 43,839 

- 3232 
369 

2531 
2015 
1597 
3980 
1244 
452 

-432 
- 2258 
- 3334 
- 2273 
- 1661 

59,404 8325 
56,105 ~ 5407 
53,145 - 4489 
50,526 -2193 
48,241 1523 
46,296 - 479 
44,690 3297 
43,422 1735 
42,492 1831 
41,901 1520 
41.648 -61 
41,733 - 1226 
42,156 -590 
42,919 - 741 

a Values in thousands. 

The data were fit to both an exponential decay and a polynomial 
with a negative linear term and a positive quadratic term. For the 
exponential decay function, R2 = 0.864. For the polynomial, R2 = 
0.752. Both the linear and quadratic terms were significant. That is, the 
overall process of change in network connectedness is increased connec- 
tivity according to a decay function, but the reversal in the last two 
time periods is captured by the polynomial. 

The change scores. The overall change scores (the sum of the dif- 
ferences between the spaces at t,+n and ti reveal a consistent pattern. 
They are presented in Table 3 and Figure 2. The data suggest two 
distinct epochs: an early period, 1968-74, characterized by a high rate 
of change, and a stable period, 1974-81. The airline network initially 
changed from a rapid but nearly constant rate of change to a slow and 
nearly constant rate of change. 

The change in individual nodes. Insights into the changing pattern of 
the nodes’ relationships may be gained by examining specific nodes. 
For each of the first seven years, Ft. Lauderdale and San Diego 
changed more than twice the overall average. During the later period, 
Tampa and Dallas changed more than the average, but these were small 
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Figure 1. Trace of air traffic network over time. 
Note: Significance of polynomial coefficients: b, (p < 0.005); b>( p < 0.03) 

when the overall magnitude of change is considered. Specifically, Ft. 
Lauderdale and San Diego moved from the periphery toward the center 
of network. These nodes were replaced at the periphery by smaller 
midwestern cities - Columbus, Cincinnati and Indianapolis. 

Change in the air traffic network structure. The network structure 
changed over time. Groups within the network were identified by 
hierarchical cluster analysis. During the first epoch, there were two 
regional groups. One was centered around Chicago and New York and 
included all the eastern and midwestern nodes from Miami to 
Minneapolis. The other cluster was centered on the west coast around 
Los Angeles and San Francisco. It included another regional cluster 
containing New Orleans, Dallas and Houston. Worth noting were the 
positions of Kansas City and St. Louis. While the latter was part of the 
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Table 3 
Overall change between adjacent points m time using air traffic data 

Years Difference 

1968-1969 585.8 
1969-1970 2.278.5 
1970-1971 2.316.8 
1971-1972 2,362.9 
1972-1973 2.370.2 
1973-1974 2,350.6 
1974-1975 383.2 
1975-1976 259.8 
1976-1977 216.1 
1977-1978 253.5 
1978-1979 302.6 
1979-1980 248.0 
1980-1981 241.9 

eastern cluster, the former was grouped with the west. The break in the 
air traffic network in 1969 appeared to go through Missouri north to 
the west of Minneapolis and south to the east of New Orleans. 

Analysis of the later years fails to find as profound regional clusters. 

25 
??o.m 

. 

%-t-eke I Time 
69 71 73 75 77 79 84 Year 

Chdnge 
??A Riemann x iO0 

Figure 2. Overall change in coordinate value of air traffice network over time 
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New York, Chicago, Los Angeles, San Francisco, Dallas and Houston 
combine into a single cluster. Other individual nodes are then added to 
this hub with little prior regional clustering. 

This pattern was confirmed through regression analysis. The coordi- 
nate values of 1969 and 1980 were regressed on latitude and longitude. 5 
In 1969, the first dimension accounted for 70.4 percent of the variance 
in longitude and the first four, 83.6 percent. The first dimension 
accounted for 25.1 percent of the variance in network structure and the 
four together, 34.3 percent. In 1980, the first dimension accounted for 
only 63.7 percent of the east-west variation. It took six dimensions to 
account for 83.3 percent. The first six accounted for only 13.4 percent 
of the network structure and the six 41.1 percent. The variation 
attributable to longitude is more homogeneously distributed in 1980, 
indicating a breakdown of the regional groupings. 

The regression analysis also revealed a change in north-south varia- 
tion. In 1969, there was no clear relation between latitude and the 
network dimensions. The largest proportion of variance in latitude 
accounted for by a single dimension was 25.5 percent and it accounted 
for only 0.5 percent of the network structure. The second largest was 
18.8 percent. It accounted for only 0.6 percent. It took 11 dimensions to 
account for 86.7 percent of the variance in latitude. The variation 
attributable to latitude was homogeneously distributed. In 1980, it took 
only six dimensions to account for 88.5 percent of the variance in 
latitude. The first two accounted for 19.9 percent of the network. This 
indicates greater north-south differentiation. Thus, while the network 
in 1969 was characterized by east-west differentiation, in 1980 it was 
characterized by north-south differentiation. This suggests that the 
fundamental change in network differentiation occurred from coast-to- 
coast to frost belt-sunbelt. 

Network homogeneity of linkage. The distribution of air traffic in the 
U.S. became more homogeneous. This may be supported by examining 

5 To check the validity of these procedures, the physical distances among the cities were 
transformed into spatial coordinates and then the coordinate values regressed on latitude and 
longitude. Dimension l’s correlation with longitude was 0.993. Dimension 2’s correlation with 
latitude was 0.982. These dimensions accounted for approximately 81 and 19 percent of the 
variance in the distances among the cities. Together, they account for 98.7 percent of the 
variance in the distance among the cities. The remaming 1.3 percent may be attributable to 
measurement and rounding error and the curvature of the earth. Thus, regressing matrix S’s 
coordinate values upon the latitude and longitude can be used to determine the impact of 
physical location on network structure. 
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changes in the warp and the distribution of variance among the 
dimensions (eigenvalues). If the network became more homogeneous, 
that is, the links became equally strong, then the space would become 
more Euclidean (warp = 1.0) and the variance explained by the single 
largest dimension would decrease. In 1968, it was 330.8 percent (Per- 
centages greater than 100 are due to the warp.) In 1969, it was 43.0 
percent, and by 1981, 14.0 percent. If all dimensions were equivalent, 
each would account for only 3.2 percent of the variance. The variance 
in the size of the eigenvalues also decreased. In 1968, the standard 
deviation was 77.73, in 1969, 9.37. After 1971, it stabilized between 2.89 
and 4.52. 

The warp indicates that the links became more homogeneous. In 
1968, it was 3.97, in 1969, 1.25, and by 1978, 1.04. Warp, however, 
showed a very slight increase during the last two years of the analysis. 
It rose to 1.09 (1980) and 1.10 (1981). This suggests that the distribu- 
tion of air traffic was becoming slightly less homogeneous. This is 
consistent with the finding that the network became somewhat less 
interconnected. The values of the percent variance of the first dimen- 
sion, standard deviation of the eigenroots’ percent variance and the 
warp for each year are presented in Table 4. 

Graphic representations of network structure. Scaling programs pro- 
duce coordinate values which can be used to graphically represent the 

Table 4 
Homogeneity of the air traffic network over time 

Year 

1968 
1969 
1970 
1911 
1912 
1913 
1914 
1975 
1916 
1911 
1978 
1919 
1980 
1981 

Percent variance Standard deviation 
first dimension of eigenroots 

330.8 77.73 
43.0 9.31 
28.4 5.22 
25.5 4.64 
21.9 3.98 
20.1 3.91 
23.8 4.52 
17.8 3.33 
16.6 3.23 
16.3 3.10 
15.0 2.91 
14.6 2.89 
14.6 3.22 
14.4 3.30 

Warp 

3.91 
1.25 
1.13 
1.11 
1 .Ol 
1.01 
1.09 
1.06 
1.06 
1.04 
1.05 
1.05 
1.09 
1.11 
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Figure 3. Two-dimensional portrayal of 1970 air traffic network with regrewon of longitude of 
airports. 
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Figure 4. Two-dimensional portrayal of 1980 air traffic network with hierarchical clustering 
solution. 
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relationships among the nodes. Plots have not been presented because 
of the low percentage of variance attributable to any two dimensions. 
However, since the goal of this article is to demonstrate the utility of 
this method, two plots are presented. They are 1970 (Figure 4) and 1980 
(Figure 5). The two plotted dimensions account for 37.7 percent of the 
variance in 1970 and 23.0 percent in 1980. The later percentage is 
smaller due to the increased connectedness of the network. The 1970 
plot has longitude regressed on the first dimension. The 1980 plot 
includes its cluster analysis. There is considerable distortion in both 
plots due to the low percentages of explained variance. 

These plots were chosen to demonstrate network changes. The 1970 
plot shows a midwest-eastern cluster with Ft. Lauderdale and Portland 
at the periphery. Also, there is a prominent east-west dimension. By 
examining the scale it is clear that density and connectedness became 
greater. The 1980 plot shows a further breakdown of the regional 
clusters, an increase in homogeneity and interconnectedness. If these 
two dimensions accounted for all the variance in the network, centrality 
could be visually represented by the node’s distance to the origin. In the 
plots Chicago is closest to the origin. The issue of centrality will be 
discussed at greater length in the second example. 

Stability within the network. Up to this point only changes in the 
network have been discussed. Stability has not been addressed. Stability 
may be inferred through an examination of the correlations of the 
node’s locations on the dimensions at adjacent points in time. The 
mean correlation for the first dimension was 0.981. It was 0.986 for the 
second, indicating high stability. 

A critical argument in this article concerns the use of the dimensions 
with negative eigenroots. The mean correlation on the largest (absolute 
value) of these dimensions across adjacent points in time was 0.67. For 
the last ten points it was 0.82 and 0.99 for the final four. This indicates 
that the variance on the imaginary eigenvectors is not random. Change 
in the size of these dimensions, as reflected in the warp, and the 
arrangement of the nodes on them, should be examined. 

One reason for stability within the network is the physical distance 
among the nodes. Physical proximity is one determinant of network 
structure (Olsson 1965; Rogers and Kincaid 1981). To determine how 
physical structure influences network structure, two multiple regres- 
sions were performed with the 14 sets of network coordinates as the 
independent variables and the 31 cities’ latitude and longitude as the 
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dependent variables. R* = 0.35 for latitude and 0.84 for longitude. 
These coefficients were multiplied by the mean proportion of variance 
accounted for by the dimensions across 14 data sets. ’ Since latitude 
and longitude are orthogonal, these values were summed. The results 
indicate that 18.3 percent of the variance in network structure was 
accounted for by the physical relations among the nodes. That is, a fifth 
of the structure in air travel in the U.S. can be explained simply by the 
distance between and the location of cities. 

Another factor contributing to stability within the network is the 
population of the nodes. Population is a major determinant of the 
frequency of interaction among cities (Hamblin 1977; Olsson 1965). 
The correlation between the cities’ populations in 1970 and 1980 was 
0.99. Those nodes which moved greater than the average (Ft. Lauder- 
dale, San Diego, Dallas and Tampa) all grew at least 24.7 percent. Ft. 
Lauderdale, the node whose position changed the greatest, grew 68.2 
percent. These nodes along with others with comparable growth rates 
(Houston, Denver and Phoenix) all moved from the periphery to the 
center of the network, suggesting that population stability may contrib- 
ute to the overall network stability and that change in the air traffic 
network is, in part, due to population dynamics. 

Determinants of change in network structure. The network structure 
appears to change in an orderly manner which can be described by 
simple mathematical functions. Further, those variables which facilitate 
or inhibit this change can account for the change in air traffic. Among 
them are economic factors (GNP, GNP service, personal income, 
unemployment, automobile sales, and fuel prices), changes within the 
airline industry (deregulation) and the network itself (the opening of 
Dallas’ and Atlanta’s airports). To determine their impact, annual data 
on the variables were correlated with the trace and 13 change scores. To 
control for autocorrelation, difference scores were used. Thus, the 
change in the variables were correlated with the change in the trace and 
the overall change (including that occurring on the imaginary dimen- 
sions) between adjacent points in time. 

The decision IO combine the 14 sets of coordinates was based upon the high correlations among 

the respective dimensions at adJacenl points in time. Combining the dimensions results in a 

conservative estimate of the variance attributed to physical proximity. If two dimensions are 
not identical, error is entered into the analysts and the estimates of goodness-to-fit are lowered, 
Dimension k at time I may not he dimension k at time I +1 due to change in the network 

which changes the order in which the dimensions are extracted. 
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Table 5 
Correlation of external variables with change m air traffic network structure 

Correlates Trace Change tn 
trace 

Mean overall 
change 

Deregulation 
Atlanta’s opening 
Personal income 
Dallas’s opening 
GNP 
GNP service 
Producer prices 
Consumer prtces 
Unemployment 
Automobile sales 
Fuel prices 

-0.51 
-0.31 
-0.69 * 
- 0.60 * 
- 0.68 * 
-0.61 * 

0.75 * _ 

0.78 * 
- 0.65 * 

0.17 
- 0.80 * 

0.26 ~ 0.46 
0.26 -0.36 
0.38 -0.56 * 
0.27 -0.89 * 
0.41 - 0.67 * 
0.25 -0.38 
0.24 - 0.29 
0.02 0.12 
0.10 0.03 
0.00 0.00 
0.53 0.31 

* Sigmficant at 0.05 level 

The opening of the Dallas airport correlates - 0.89 with the overall 
change. Prior to its opening, there is a consistent high rate of change 
(see Figure 2). Afterwards the rate of change is lower. The network 
becomes stable. Both change in personal income and GNP correlate 
significantly with the overall rate of change. While none of these 
variables has a significant relation with the change in the trace, they do 
have among the highest correlations. Although not significant, change 
in fuel prices has the highest correlation with the change in the trace 
(0.53) and a strong relation with the overall change. These results are 
presented in Table 5. 

Descriptively, these variables relate to the critical points in time that 
have been identified through the analysis of the network. In 1974, there 
was a slight reversal in the trend toward greater connectedness. That 
year, fuel prices had their first large increase. Jet fuel prices caused an 
increase in ticket prices which may have resulted in fewer trips and thus 
lower connectedness. Between 1974 and 1975 the network stabilized. In 
1974, the Dallas airport opened. Its use as a central hub seems to have 
stabilized air traffice. 

1980 began a trend toward lower connectedness. Atlanta’s airport 
opened. There was no longer a need to travel through a central node 
since Atlanta expanded into a regional hub. Thus, the network de- 
centralized. 1980 also saw an increase in unemployment and a smaller 
increase in personal income. Thus, the change in the trend may be due 
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to economic factors. 1981 was also marked by the air traffic controllers’ 
strike which forced a cutback in air traffic. The continuation of the 
trend may have been due to this event. 

This example has demonstrated the utility of Galileo in describing 
changes in the U.S. air traffic network, 1968-81. The results suggest 
that Galileo can be used to describe the orderly change in network data 
and that changes can be described by simple mathematical functions 
that can readily be interpreted when exogenous factors are examined. 
Much of the analysis (such as the regressions of physical distances) 
reported here would not have been possible if a non-metric algorithm 
had been employed because such algorithms alter the relations among 
the scaled nodes. Futher, important insights were made because the 
data were analyzed with a non-Euclidean algorithm. Warp, the measure 
of the extent to which the space departs from being Euclidean, pro- 
vided important insights about the homogeneity of the linkage struc- 
ture. Similar results were obtained with a more laborious examination 
of the distribution of variance of the eigenroots. Further, loadings on 
those dimensions with negative eigenroots were highly correlated with 
one another at adjacent points in time. This indicates that these 
dimensions are not composed of random error but rather true variance 
which facilitates the understanding of social networks. 

4.2. Computer conferencing groups 7 

The second example is the “private messaging” behavior of the users of 
the EIES computer conferencing system. The study reporter here is part 
of a larger analysis of new communication media (Hiltz 1983; Hiltz and 
Turoff 1978; Kerr and Hiltz 1982; Rice 1980a, b; Rice et al. Associates 
1984; Rice and Case 1983; Rice and Paisley 1982). Other network 
analyses of portions of these data are reporter by Freeman (1980, 1984). 
These messaging data constituted 70 percent of all items on the system. 
A total of of 10 groups made up the EIES system for its first months. 
Group 0 (n = 17) included user consultant and system personnel, whose 
role was to maintain the system and help others users. They communi- 

’ Partial support for preparatm of the network data was provided by National Science 
Foundation Grant NSF-MCS-77.27813 IO Dr. Roxanne Hiltz. Much of this section is a revised 

version of portions of Rice and Barnett (1985). 



cated more with the other groups than any other specific group. Groups 
1 (n=45), 5 (~7=56), 6 (n=25), 7 (17=30) and 8 (n=76) were 
task-oriented groups, while groups 2 (n = 32), 3 (t7 = 46) and 4 (t7 = 67) 
were not formally mandated to accomplish a task. Group members 
were typically researchers, university faculty or government-sponsored 
agency personnel. Group 9 included all those users not otherwise 
members of a specific group. They did not perceive themselves as 
members of any group, so were free to roam throughout the conferenc- 
ing system. 

Some of the groups were part of EIES system staff, some were 
researchers invited to join the system as part of the evaluation, others 
were ongoing research groups, and not all groups were on the system 
for all 25 months. Groups 0 and 9 were, as were 2 through 5. But, 6, 7 
and 8 entered during month 12. Group 1 left the system at this time, 
but entered again in month 21 with a different identity. 

One important attribute of the data is that they were collected by 
computer. Computer-monitored data for network research have a num- 
ber of advantages (Danowski 1982; Rice and Borgman 1983; Rice and 
Rogers 1984). One, the data represent acutal communication behavior 
as noted earlier. Two, a full census of system users can be obtained, 
which better represents the interactive nature of communication data 
and which allows network analysis for which samples of the entire 
population are typically needed. Three, extensive longitudinal data are 
accessible so that limitations of cross-sectional network research may be 
overcome (Monge 1982; Rice 1981). 

Over the 25 months, more than 700 unique users participated. The 
first month was start-up time, so this analysis begins with month 2. 
Although data were collected continuously, they were aggregated into 
monthly intervals to facilitate handling and analysis. The monthly 
aggregation resulted in nearly 87,000 data points each a link identified 
by individual and group, sender and receiver, and month. At the system 
level, the data indicate how many messages were sent within each group 
and to each of the other groups in each month. 

Prior anlaysis of these data used both the intragroup and intergroup 
data to describe and test models of network development. Specifically, 
the system as a whole was very well described by a log-linear model 
which posited reciprocal information flows between groups but similar 
flows within groups. Groups were well-categorized into network roles 
based upon estimated parameters of these information flows (Rice 
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1982). For example, a group which sent and received more messages 
than the average group (in that month) was classified as a “carrier”. 
“ Receiver” groups received more messages but sent fewer messages 
than did the average group. “Transmitters” did the opposite. “Isolate” 
groups sent and received less. Each of these roles can also be differenti- 
ated according to their having higher or lower than average levels of 
within-group messaging. Using the four-fold role typology, however, 
analysis showed that groups 0 and 9 were consistently information 
carriers. Task groups generally remained isolates after a few months as 
carriers or receivers, while nontask groups shifted from isolate roles 
through transmitters to carriers or receivers (Rice 1982: 939). In gen- 
eral, an electronic environment is entropic and it is difficult for a group 
to sustain a carrier role. 

Previous analysis of these data found the relations among the groups 
to be best modelled as reciprocal across groups (Rice 1982). Thus, 
matrix S was treated as symmetrical. Therefore, the nondirectional 
interaction frequencies (the average of s,, and s,,) were entered into 
both the upper and lower triangles of the 24 matrices, one for each 
month. 

Two scaling approaches were used. In the first, matrix S was 
composed of communication frequencies instead of distances. This 
operation has a number of advantages. One, connectedness is scaled 
positively. Two, it is simpler than using distance matrices and does not 
alter the dimensionality of the network space. Three, when three is no 
theoretical criterion for selecting a function for transforming similari- 
ties into dissimilarities, the direct scaling of the frequencies allows the 
direct comparison of changes in the network (Barnett 1984). Scaling 
frequencies is the same as using similarity data, rather than dissimilarity 
data, to scale psychological stimuli (Shepard et al., 1972). Its major 
disadvantage is that the greater the frequency of interaction among two 
nodes, the farther apart, rather than closer, the nodes are in space. 
Graphic interpretation is difficult. 

The second approach transformed the frequencies of interaction to 
social distances. All off-diagonal elements were subtracted from 655, 
the largest intragroup communication frequency. However, because the 
largest frequency of intragroup communication was 405, this transfor- 
mation added a constant to all values in the sociomatrices, altering the 
dimensionality of the coordinates and the value of a number of descrip- 
tive indicators including warp. These matrices, once transformed into 



social distances, were entered into Galileo. Results from both approach 
will be discussed. 

4.2.1. Results 
Centrality. Table 6 presents the centralities of the groups for each 
month. ’ Groups 0 and 9 are the most central. They are closest to the 
origin. At nearly every month, group 0 is the most central node, as 
befits its service role. Nearly all system-wide “broadcast” messages 
emanated from this group. All users could send comments or help 
messages to this group. It was an information “carrier.” The group of 
unaffiliated users, 9, was the most central in the remaining periods. In 
general, nontask groups were more central than the task groups, sup- 
porting their prior role-categorization as information “carriers.” Group 
8 was the exception, becoming more central. The other task groups are 
less central and were categorized as information isolates by prior 
research (Rice 1982). 

Connectedness. Table 7 presents the two indicators of system con- 
nectedness and homogeneity of linkage. The first indicator, the trace of 
the communication distance matrix, is inversely related to connected- 
ness. The second, the trace of the frequency matrix, is a direct measure 
of connectedness. Since the participants knew that the conferences were 
ending at the end of month 25, use of the system decreased before then. 
As a result, data from month 25 were dropped from further analysis. 

These indicators were plotted against time, revealing that connected- 
ness increased over time. There was no evidence of non-linear trends. A 
linear regression using successive time periods was performed with both 
indicators. For communication distance, R2 = 0.80, b = - 3,150 and 
for the frequencies, R ’ = 0 78 . , b = 429. An examination of the residu- 
als failed to identify any additional pattern. 

Homogeneity of linkage. The network’s linkages were not distributed 
homogeneously. Warps ranged from 3.32 to 4.97. Homogeneity of 
linkage remained stable, with only 10 percent variation between time 
periods. This stability is partially due to the fact that increases in 
linkage remained proportional across the groups. Groups 0 and 9 were 
the most central over time and their frequency of contacts remained 

” Because the matrix cell values have been transformed by the greatest intragroup frequency, 
655. rather than one greater than the largest intergroup frequency. the centrality values have 

meaning only relative to one another. 



Table 6 

Centrality of groups at 24 monthly intervals 

Month Groups 

0 1 2 3 4 5 6 7 8 9 

2 421.7 440.6 441.4 440.5 440.9 440.2 441.4 441.4 441.4 423.6 -~~ 
3 421.1 441.8 431.5 438.9 433.4 442.1 443.0 443.0 443.0 421.9 -__~ 
4 407.5 442.8 437.4 440.2 431.2 441.1 443.7 443.7 443.1 417.2 ______ 
5 397.4 444.9 434.4 430.2 431.9 438.7 445.8 445.8 445.8 410.4 

6 399.2 444.0 433.2 423.3 434.4 439.0 447.0 447.0 447.0 399.5 -__~ 
7 399.4 443.1 434.2 432.3 429.4 441.5 445.9 445.9 445.9 407.3 ______ 
8 396.9 445.0 436.0 430.9 427.0 441.3 446.1 446.1 446.1 407.6 -~~ 
9 399.3 445.8 433.5 436.6 424.0 436.3 446.1 446.1 446.1 408.6 ______ 

10 403.2 443.3 435.1 437.6 433.6 438.9 444.7 444.1 444.7 411.7 ~__~ 
11 401.4 444.8 433.3 434.2 433.7 437.4 445.7 445.7 445.7 405.7 ~~~ 
12 397.3 445.7 437.5 440.0 437.7 442.0 440.3 444.0 439.7 402.6 

13 392.7 447.1 439.1 438.3 435.7 440.7 440.7 442.9 438.4 396.3 

14 317.2 449.1 437.0 440.5 436.7 439.3 443.5 441.7 436.2 486.5 

15 388.1 441.6 437.0 440.7 436.5 441.0 444.3 442.1 436.5 391.1 

16 389.2 450.8 435.1 436.7 430.7 440.2 445.1 442.5 429.1 369.9 

17 386.0 448.7 439.5 430.3 437.7 440.8 441.8 442.9 434.4 391.1 

18 385.9 449.3 439.4 429.8 436.5 442.0 444.6 442.5 429.5 388.0 

19 386.0 449.9 438.4 438.1 436.8 440.9 443.0 442.7 424.0 379.5 

20 384.8 449.3 434.4 440.5 434.8 444.4 444.7 443.7 429.3 379.6 

21 391.4 443.4 435.6 437.7 434.1 444.9 444.9 441.1 436.1 391.6 

22 379.1 443.2 433.4 441.4 431.6 442.3 445.9 444.9 433.4 385.8 
23 369.8 442.4 433.2 442.5 433.8 444.1 448.6 444.5 432.8 374.7 

24 370.9 437.6 432.6 442.1 435.8 444.3 449.3 445.8 426.4 373.7 

25 412.5 439.7 438.7 441.1 438.4 441.0 443.5 440.8 436.6 418.9 

’ Underlined values indicate isolates, or groups not on the system at that time period. Lower 
values are more central. Values are relative to highest intergroup communication frequency plus 
one. Because the matrix cell values have been transformed by a factor of 655, the table values 

have meaning only relative to one another. 

disproportionally greater than the other nodes. This network may be 
simplistically described as a hub-spoke network with two groups at the 
hub. This structure did not change much over time. 

The warps in this example are much larger than in the first (see 
Table 4 and 7). In the prior example, the network was highly intercon- 
nected. It may be described as having a common-communication or 
all-links structure. None of the nodes was significantly more central. As 
a result, a multidimensional Euclidean space may have been satisfac- 
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Table 7 
System connectedness and warp at 24 monthly intervals 

Month Inverse Connectedness: 
connectedness: Trace of 
Trace of frequencies 
distance matrix matrix 

Warp 

2 1.912.942.8 1546.8 4.97 
3 1,899,942.5 1646.9 3.97 
4 1.892.836.8 2521.3 4.01 
5 1.873.427.2 3406.4 3.32 
6 1.863,521.5 4960.6 3.78 
I 1.873.365.0 3996.4 3.91 
8 1.871.554.2 4477.0 3.85 
9 1,870.964.2 4215.0 3.92 

10 1,883,379.7 3237.4 4.20 
11 1,875,145.2 4496.3 4.34 
12 1,874,990.5 6145.2 4.74 
13 1,862,680.9 5888.3 4.39 
14 1.844.001.1 9999.5 4.35 
15 1,857,397.2 7483.0 4.31 
16 1.828,973.0 8857.8 3.16 
17 1,847,636.0 7538.3 4.19 
18 1,842,895.6 7783.9 4.06 
19 1.837,735.7 8695.1 3.85 
20 1,842,339.6 9518.4 4.12 
21 1,856,089.0 6693.4 4.32 
22 1,838,332.3 7805.0 3.85 
23 1,827,824.1 14393.5 4.33 
24 1,821,040.8 12130.9 3.90 
25 1,894,242.7 1421.3 4.08 

tory to describe the network. In this example, however, the nodes are 
not highly linked and two nodes are more central than the rest. As a 
result, the warps are much higher and a Riemann manifold of limited 
dimensionality is required to describe the network. 

Dimensionality. Scaling the frequency matrices resulted in a two-di- 
mensional solution for all time points. These were the largest real and 
imaginary dimensions (the overall solution reported four real and six 
imaginary dimensions). They accounted for virtually all (99%) the 
variance in the coordinate space. The mean correlation among the 
dimensions at adjacent points in time were 0.999 (real) and 0.740 
(imaginary). The amount of variance, the high correlation among the 
loadings on the imaginary dimensions, and the values of the warp 
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indicate that this network must be described in a Riemann, rather than 
Euclidean space, and that the network’s overall structure was relatively 
stable over time. 

The nodes’ loading on these two dimensions is instructive. For 
month 2, all nodes except 0 and 9 were approximately at the origin, on 
the dimension with a positive eigenroot. Groups 0 and 9 had loadings 
at 62.02 and - 61.98 respectively. On the one with a negative root all 
the nodes except 0 and 9 were at about 12.35. Groups 0 and 9 
were - 49.55 and - 49.58. Thus, the coordinates which result from 
MDS provide information which can be used to interpret network 
structure and determine where violations of the triangular inequalities 
occur. 

Scaling the distance matrices did not result in as simple a solution. 
The two largest dimensions accounted for an average of only 15.2 and 
11.7 percent of the variance (these comprised nine real dimensions and 
one imaginary dimension). (An equal distribution of variance among 
the dimensions would have resulted in 10 percent.) The mean correla- 
tions among these dimensions between adjacent points in time were 
only 0.69 and 0.58 (F = 18.5, 11.3; p < 0.005). Because of the lower 
percentage of variance explained and the lower correlations among the 
dimensions, all further analysis compared the network’s coordinate 
spaces from the frequencies rather than from the distances. 

However, for graphic purposes, months 2, 14 and 24 of the distances 
have been plotted in Figure 5. 9 The two dimensions in Figure 5 
account for only 25-28 percent of the variance in network structure. 
Therefore, conclusions about how the network changed should not be 
based upon this representation. Figure 5 indicates that the network 
became more connected. Again, groups 0, 8 and 9 appear to move 
toward the origin, while the task groups other than 8, identified as 
increasingly more information isolates by Rice (1982), drift away from 
the origin. lo Nontask gro u p s 2, 3 and 4 cut across the central area of 
the space, remaining information carriers and relatively central to the 
system. 

This plot was drawn from the coordinates after they were rotated, to minimize departure from 
congruence from the previous point in time. 

” Rice and Barnett (1985) explain group 8’s apparently anomalous categorization as a result of 
the differences in MDS us. log-linear analyses. The log-linear analysis took into consideration 
intragroup communication, while MDS does not. Group 8’s heavy intragroup interaction 
reduces its relative centrality in the three-way log-linear analysis. 
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Figure 5. Change in spatial coordinates of ten computer conferencing groups. at three time periods. 

based upon distance matrw. 
Nope: Position at Month 2 is closest to group number. 25.4 percent of variance explained at Month 
2. Position at Month 13 is middle point of line segment. 26.8 percent of variance explained at 
Month 13. Position at Month 24 is end point of line segment. 28.2 percent of variance explained at 

Month 24. 

Change in the structure of the network coordinates. The coordinates 
which resulted from the MDS were next compared using an ordinary 
least-squares rotation. The overall differences among the nodes on all 
dimensions are presented in Table 8 and Figure 6. 

Table 8 and Figure 6 show an increase in the network’s rate of 
change. A linear regression with monthly intervals as the independent 
variable suggested that the network did not stabilize ( R2 = 0.8, a = 
- 0.24, b = - 12.6, F = 88, p < 0.001) in spite of the high correlations 
between dimensions across time. However, a closer examination of the 
changes reveals an initial slow rate of change for months 2 to 5, with an 
acceleration between months 5 and 9. The differences became smaller 
for months 9 to 11, suggesting that the network structure was beginning 
to stabilize. Groups 6, 7 and 8 entered the network at month 12. As a 
result, the rate of change increased between months 11 and 12. The 
reciprocity model did not fit the data well at this time either (Rice 
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Table 8 

Months Dimensions 

Overall Real Imaginary 

2-3 -1.49 1.46 2.86 
3-4 - 4.97 1.98 4.18 
4-5 - 10.80 2.48 6.41 
5-6 - 55.47 3.37 11.98 
6-l - 56.84 2.75 8.40 
7-8 - 88.91 3.01 9.72 
8-9 ~ 75.03 3.13 10.27 
9-10 - 38.77 2.65 7.47 

10-11 - 86.33 3.22 11.50 
11-12 - 169.94 4.11 18.72 
12-13 - 156.98 3.78 15.88 
13-14 - 244.87 4.87 26.42 
14-15 - 194.80 4.27 20.34 
15-16 - 180.80 4.20 19.84 
16-17 - 186.78 4.21 19.69 
17-18 - 183.72 4.27 19.49 
18-19 - 188.33 4.40 21.19 
19-20 - 219.21 4.57 23.68 
20-21 - 162.20 4.01 17.90 
21-22 - 169.41 4.01 18.06 
22-23 - 316.29 5.65 35.52 
23-24 - 253.32 4.94 27.71 
24-25 230.13 2.05 4.54 

1982). This high rate of change continued throughout the next year with 
the greatest change between months 23 and 24. The rate of change, 
however, stabilized between months 14 and 19 before oscillating and 
rising at the end suggesting that the network may have again begun to 
stabilize at this level of interaction. These rates of change indicate 
shifting of levels of communication rather than of the pattern of 
communication, so they do not reflect the stability of the fit of the data 
to the reciprocity model discussed earlier (Rice 1982). 

The overall motion was negative because there was greater change on 
the imaginary dimension than on the real. As a result, motion on both 
dimensions was analyzed separately. There is considerably more motion 
on the imaginary dimension. The mean changes were 15.58 (imaginary) 
and 3.62 (real), a ratio of 4.3 to 1. The variances were also considerably 
different, 8.66 for the imaginary and only 1.06 for the real. Clearly, the 
positions of the groups on the imaginary dimensions were volatile, Had 



G.A. Barnerr and R. E. Rm / Longirudrnol non-Euclidean nerworks 315 

-350 
0 5 i0 45 20 25 

Monthly Change Interval 

Figure 6. Overall change in coordinate values of computer conferencing network over time 

Note. See Table 8. 

an Euclidean model been used to describe the changes in the network, 
this information would have been lost. A linear regression was also 
applied to each dimension separately. For the real dimension, b = 0.138, 
a = 2.11 and R2 = 0.77. For the imaginary dimension, b = 1.14, a = 2.94 
and R2 = 0.76 (F = 73, p < 0.001 for both). These results suggest that 
the rate of change in the communication patterns in the network 
increased. There was an initial slow rate of change which then accel- 
erated, oscillated, accelerated and showed a period of stability before 
accelerating at the end. The implications of different conclusions about 
network stability from different measures are discussed in Rice and 
Barnett (1985). 

4.2.2. Summary 
In this example, Galileo was applied to describe two years of computer 
conferencing network data. Derived measures of centrality, system 
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connectedness and homogeneity of linkage were examined. How these 
indicators and the overall network structure changed were discussed. 
This network required a non-Euclidean multidimensional space because 
the groups varied in centrality. Two groups were near the origin of the 
space while the other 8 resided at the periphery. Thus, triads composed 
of either group and any other pair of nodes violated Euclidean proper- 
ties. The spatial manifold which resulted from scaling the nodes’ 
frequency of interaction was two-dimensional, one real and one imagin- 
ary. The imaginary dimension correlated 0.74 with itself at adjacent 
points in time despite changes in the network which occurred predomi- 
nantly on this dimension. The linear component accounted for 76 
percent of the variance in the change scores. Further, deviations from 
the linear were interpretable. They resulted from the entrance of groups 
into the system or the length of residence of the nodes. This example 
has provided further evidence of the utility of a Riemannian spatial 
manifold for describing social networks. 

5. Discussion 

This article has suggested theoretical and empirical rationales for using 
a non-Euclidean manifold when using a spatial model, such as MDS, to 
describe social networks. It advocated the use of a variant of metric 
MDS, Galileo, whose algorithm allows for the analysis of network data 
in Riemannian space. It then applied Galileo to two different sets of 
network data. In both cases the data were behavioral, rather than 
self-reported, and based upon a large number of interactions. Thus, the 
data are of sufficient accuracy and reliability to obviate discussions of 
measurement or instrument error. Further, these data may be easily 
obtained if one wishes to replicate the research or compare the results 
from Galileo with more traditional MDS algorithms, 

The Galileo results described an orderly pattern of change in both 
networks. In the air traffic network, connectedness (as measured by the 
trace of the social distance matrix) increased over time. The change in 
connectedness was described by a function which accounted for 87 
percent of the variance in connectedness. Further, the residuals could 
be accounted for by exogenous factors. A second function, a poly- 
nomial, significantly describes the reversal in the trend in connected- 
ness. As the network became more connected, warp, the degree to 



GA Burnett and R.E. Rice / Longrtudinal non-Euclrdean networks 317 

which the space is non-Euclidean, became smaller. These results are 
readily interpretable by physical, historical and economic factors. 

The results from the EIES network indicate that two groups are 
much more central than the other eight. Thus, the network structure 
remained highly non-Euclidean. Further, change in the system’s con- 
nectedness was orderly. The rate of change was probably a function of 
whether or not new nodes entered the network and the nodes’ length of 
residence. Again, these results were readily interpretable. 

Internally consistent, theoretically valid predictions from exogenous 
variables were obtained with Galileo. For both data sets, loadings on 
the imaginary dimensions at adjacent points in time were highly corre- 
lated despite true change in the network. As predicted in the theoretical 
discussion, the levels of warp were much higher in the network in which 
a subset of nodes were more central than the rest.They ranged from 
3.32 to 4.97 in the EIES network. For the highly interconnected airline 
network, the warps were much lower, 1.04 to 3.97. The highest value 
occurred when two of the nodes resided at the periphery. 

The results from Galileo are consistent with other methods of 
network analysis. The data reported in the second example are con- 
sistent with those reported by Rice (1982), who used a log-linear 
analysis to describe transitions in the network. Barnett, et al. (1985) 
found that Galileo produced comparable results with NEGOPY 
(Richards and Rice 1981; Rice and Richards 1985) when used to 
identify cliques. 

There are a number of relative advantages of Galileo over other 
methods of MDS for network analysis. One, its algorithm allows a 
non-Euclidean spatial manifold. This is a theoretical advantage when 
dealing with networks which vary greatly in centrality. Two, it provides 
a convenient measure, warp, which describes the structure’s departure 
from being Euclidean. This measure along with the imaginary eigen- 
roots and the nodes’ loadings on these dimensions provides a detailed 
description of the network. Three, Galileo is appropriate for longitudi- 
nal analysis. It automatically provides detailed information on the 
changes in the node’s relative positions over time on both the real and 
imaginary dimensions. This is done without standardizing the data. In 
this way, it is possible to describe the dilation and contraction of the 
network space, and thus make statements about its changing density. 
Four, Galileo is a metric scaling program. This is required for regress- 
ing exogenous factors through single spaces and fitting curves to the 



318 G.A. Barnett and R. E. Race / Longrtudinal nowEuclidean netwrks 

changes in longitudinal data. Fifth, Galileo provides a measure of 
centrality. It may be determined by taking the square root of the 
diagonal of the scalar products matrix. 

There are some problems with Galileo. Its application is limited to 
relatively small networks. Currently, the software is limited to 40 notes 
and 40 points in time, although one could change the program’s 
dimension statements for larger networks. Galileo is designed for 
symmetrical matrices (s,, = s,,). In those cases where the researcher is 
interested in directional or non-reciprocal networks, special procedures 
are required. One would have to create two matrices S (send) and S 
(receive), and then compare as if they were separate points in time. 
Galileo requires variance in strength of link (frequency of interaction). 
It may not converge to a solution if the cells in the matrix are too 

” One interpretation of the Riemannian distances in social networks involves the concept of 
transitivity. Transitivity posits the presence of links among a triad of nodes, and thus some 
small social distance among them. That 1s if a talks with h and h talks with c. then c talks 
with a. The direction of these linkages is an important aspect of transitivity which IS not 
discussed here. An entire methodology of analyzing these “local structures.” or triad census. is 
heavily concerned with the amount and distribution of transitivity (Holland and Leinhardt 
1976). Most studies of closed networks do, indeed, find triads moving away from intrasitivity 

over time, although the majority of structures remain intransitive (KIllworth 1974). 
It may be argued that Euclidean space allows for a continuum of transitiveness, from 

completely connected triads in a network, to completely unconnected Isolates. A network in the 
aggregate is more or less transitive. In that sense, Euclidean space allows for the full range of 
network structure. However, two aspects of transitivity are confounded in this portrayal. This 

notion of transitivity allows only for the presence or absence of links. That is, a triad is 
transitive or it is not, though there are many varieties of intransitivity (see Holland and 
Leinhart 1976; Killworth 1974). but that is determined solely by where links exist or do not 
exist. 

But, what is to be done about a relation among, I. 1 and k where i/ = 5, ./k = 3 and ik = 17? 

That is transitive and clearly non-Euclidean. Nodes k and I have frequent or strong or 
important messages, and no Euclidean representation can reconcile this with the other two 
relationships, except by transforming scalar values to binary, by ignoring complex roots in the 
mathematical solutions. or by forcing all values to conform to Euclidean calculations (as in 
Burt’s 1980 method for computing social distances). 

Further, the assumption of transitivity in social relations as being predominant seems 

unnecessary, and sometimes contradictory to the realities and economics of social structure. 
Some kinds of nonreciprocity and structural differentiation enhance a group’s stablhty. and 

tntransitivity and liaisons promote individual survivability by preventing direct competitlon for 

resources (Amir 1979; Killworth 1974). Further, groups or individuals with partially differenti- 

ated resources can operate more efficiently by depending on liaisons (which may imply 

intransitivity) to manage some resource acquisitions (such as new information - Granovetter 

1973). Interest in an analogous form of intransitivity - “Q-holes” in Q-analysis or the relations 

of relations (Freeman 1980) - may be specified by similar arguments. Insofar as intransltivity 

in social relations (the absence of some linkages or large local distances) Implies non-Euclidean 
space, analyses which assume Euclidean space may be insufficient. 
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similar. Thus, one must use more than simply binary data (link-no 
link) or Likert type items to describe relationships among nodes. 

The intent of this article has been to discuss some of the utilities in 
using a multidimensional scaling algorithm which provides the capabil- 
ity of analysing non-Euclidean networks over time. Galileo is one such 
algorithm, and, as such, should be considered as one more available 
tool on the network analyst’s workbench. Its advantages and disad- 
vantages should be considered when choosing how best to analyze one’s 
data, and in thinking about the assumptions underlying the measure- 
ment and meaning of network data. ” 
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