
CHAPTER4 

.Torgerson's Metric 
Gt;oup Method 

Greatly assisted by Ledyard Tucker and building on work by Young and 
Householder (1938, 1941), Torgerson (1952, 1958) proposed one of the fIrst 
MDS algorithms. Gower (1966, 1982) discusses and extends Torgerson's 
(1952) results. The assumptions of Torgerson's (1952) algorithm are much 
more restrictive than those of recent methods. Consequently, his approach is 
seldom used in its original form. Various features of his method have been 
incorporated into the algorithms described in Chapters 5 and 6 and, 
therefore, the Torgerson method will be described in some detail. 

At this point, a few words are in order about the fIrst example in this 
chapter. Table 4.1 shows a hypothetical dissimilarity matrix for six sports. 
The dissimilarity matrix was constructed to reflect two dimensions along 
which these sports differ: the speed of the games and the degree of contact 
between players. Hockey and football are two fast contact sports. Tennis 
and basketball are two fast noncontact sports. Golf and croquet are slow 
noncontact sports. The data in Table 4.1 will be used to illustrate how 
Torgerson's method can be employed to recover the two-dimensional con­
fIguration of stimuli underlying the data matrix in Table 4.1. The illustra­
tion will constitute a dimensional application of MDS. 

TORGERSON'S MODEL 

In Torgerson's model, the dissimilarity estimates comprising the data are 
assumed equal to distances in a Euclidean multidimensional space.· Again let 
8ij be the dissimilarity between objects i and}. Let X ik and xjk (i = I, ... , I; 
j = 1, ... , J; 1= J; k = I, ... , K) be the coordinates of stimuli i and j 
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62 TORGERSON'S METRIC GROUP METHOD 

Table 4.1. The Dissimilarity Matrix A for Five Sports and the Scalar Product 
Matrix A * Derived from It. 

Dissimilarity Matrix A 

H F B T G C 8 2 .. 
Hockey 0.00 0.71 1.41 1.73 2.00 2.00 2.25 
Football 0.71 0.00 1.41 1.73 2.00 2.00 2.25 
Basketball 1.41 1.41 0.00 1.00 1.41 1.41 1.50 
Tennis 1.73 1.73 1.00 0.00 1.00 1.00 1.50 
Golf 2.00 2.00 1.41 1.00 0.00 0.71 1.92 
Croquet 2.00 2.00 1.41 1.00 0.71 0.00 1.92 
8 2 

.J 2.25 2.25 1.50 1.50 1.92 1.92 
). 
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Scalar Product Matrix A * 

H F B T G C 

Hockey L31 1.06 -0.D7 -0.57 -0.86 -0.86 
Football 1.06 1.31 -0.07 -0.57 -0.86 -0.86 
Basketball -0.Q7 -0.D7 0.56 0.06 -0.24 -0.24 
Tennis -0.57 -0.57 0.06 0.56 0.27 0.27 
Golf -0.86 -0.86 -0.24 0.27 0.98 0.73 
Croquet -0.86 -0.86 -0.24 0.27 0.73 0.98 

along dimension k. Note that the number of rows in the dissimilarity matrix 
I will equal the number of columns J because the rows and columns 
correspond to the same stimuli. Torgerson's fundamental assumption is: 

(4.1) 

Without loss of generality, it can be assumed that the mean coordinate 
along each stimulus dimension equals zero: 

I;X'k = I;xjk - 0.0. 
j 

(4.2) 

Torgerson began by constructing a double-centered matrix A* with 
elements li,j computed directly from the data matrix. A double-centered 
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TORGERSON'S MODEL 63 

matrix is one in which the mean of the elements in each row and the mean 
of the elements in each column equals 0.0. Each element of the new matrix 
A * is of the form: 

M. ~ _l(O' - 0' - 0'. + 0') 
I} 2 IJ l. .J ..' (4.3) 

Here oi, o,~, and 0' are defined as follows: 

(4.4) 

The matrix A* computed from matrix A is also shown in Table 4.1. The 
. element in row 2 and column 3 of Ll*, oi3 ~ -0.07, was obtained by taking 
oi3 ~ (1.41), ~ 2.00, subtracting the mean of squared elements in row 2, 
oi. = 2.25, subtracting the mean of squared elements in colnmn 3, 0] = 1.50, 

, adding the grand mean squared element, 02, ~ 1.89-, and multiplying the 
result by - 0.50: .... 

oi3 ~ - H oi3 - oi- 0.3 + 02
) 

~ - te2.00 - 2.25 - 1.50 + 1.89) ~ -0.07. (4.5) 

The element in row 4 colnmn 5 of A* was computed as follows: 

0* ~ _l(o' _0'_0' +0') 4S 2454 .. S .. 

~ - HI.OO - 1.50 - 1.92 + 1.89) ~ 0.27, (4.6) 

and so forth. 
Torgerson showed that if the data satisfy Eq. (4.1), then each element in 

the new matrix A * would be of the form 

(4.7) 

For the interested reader, a proof is given later in this chapter. Equation 
(4.7) is the fundamental theorem around which Torgerson designed his 
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64 TORGERSON'S METRIC GROUP METHOD 

algorithm. Matrix d' is often called a scalar product matrix because, as Eq. 
(4.7) shows, each of its elements is the sum of products between scalars X ik 

and Xik • 

The matrix form of Eq. (4.7) is as follows:' 

d* = XX' (4.8) 

where X is the (l X K) matrix of stimulus coordinates. As described in 
Chapter 2, a principal components factor program can be used to find a 
matrix X satisfying Eq. (4.8) so long as such a matrix exists. Interested 
readers can consult a text on matrix algebra (Green, 1978; Hahn, 1973) for 
a description of methods for computing X and of the conditions under 
which such a matrix X will exist. 

Figure 4.1 shows the matrix X obtained by extracting the first two 
principal components from the scalar product matrix d' in Table 4.1. 

ROTATION 

The matrix X obtained from the principal components analysis is a solution 
of Eq. (4.8) but not the only solution. To see why it is not the only solution, 
imagine a (K X K) orthogonal transformation matrix T. If X satisfies Eq. 
(4.8), then any matrix X· = XT will also satisfy Eq. (4.8). That is, if 

Il* = XX', 

Football H.07. 0.191 

'HOd<eyH.07.0.191 

][ 

Basketball (-0.07. -0.681, 

Golf (0.86. 0; 311 , 

Croquet (0. 86. 0.311 

I 

• Tennis 
(0.49. -0.341 

Figure 4.1. Unrotated metric scaling of sports data. 

(4.9) 



ROTATION 65 

then 

A* = X*X*'. (4.10) 

Since T is orthogonal, TT' = I (see the definition of orthogonal transforma­
tion matrix in Chapter 2). Hence 

X'X" = (XT)(XT)' (4.11) 

Theorem 2 of Chapter 2 tells us that (XT)' in Eq. (4.11) equals TX'. 
Inserting this result into Eq. (4.11) yields 

X'X" = (XT)(TX') 

= X(TT')X' 

= XIX' 

=XX~ 

=A*. 

(4.12) 

As the proof in Eq. (4.12) shows, if X is a solution to Eq. (4.8), then so is 
any matrix X*. If there are several rotations of X that can reproduce A* 
equally well, then which rotation should one prefer? 

The above question is usually a moot issue in data reduction or configu­
ral applications of MDS as long as K does not exceed two dimensions. In 
such a small number of dimensions, the important features of the configura­
tion should be visually recognizable irrespective of rotation. In dimensional 
applications, however, it is not a moot issue, If the dimensions are not 
rotated to a snitable orientation, the coordinates will not correspond to 
meaningful stimulus attributes, and it will be difficult· to interpret the 
dimensions. The phrase" meaningful stimulus attributes" will be explained 
below. 
. The configuration in Figure 4.1 illustrates the kind of interpretational 
problem th~t can occur. Dimension I has the slow noncontact games at one 
end, the fast contact games at the other, and fast noncontact sports in the 
middle. The scale represented by this dimension cannot, therefore; be. 
interpreted as representing the speed of each game or the degree of contact. 
It is a confound of the two. Dimension II is also a confound of. the two 
stimulus attributes, speed and contact. It has fast noncontact sports at 
the positive end. Slow nonconiact and fast contact sports are found at the 
other end. 
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66 TORGERSON'S METRIC GROUP METHOD 

In deciding on a rotation for the solution, there are three basic options. If 
the unrotated solution is interpretable, one need not rotate the solution at 
all. Such is not the case for the data in Figure 4.1. Consequently, either an 
objective rotation or a hand rotation must be employed to obtain an 
interpretable representation of the configuration. It is to these latter options, 
objective and hand rotations, to which our attention now turns. 

Objective Rotations 

An objective rotation is a mathematical algorithm for finding an interpreta­
ble rotation of a solution. Since objective rotations were designed primarily 
for use in factor anruysis and are used only occasionally in MDS, they will 
be mentioned briefly in this book. Interested readers can consult a text on 
factor analysis (Harman, 1976) for a detailed description of such rotations. 
The objective rotations commonly available were designed for rotating a 
factor analytic configuration of tests so the configuration conforms as 
closely as possible to the criterion of simple structure (Thurstone, 1947; 
Tucker, 1967). Stated simply, a MDS solution would satisfy the criterion of 
simple structure if each stimulus had a nonzero scale value on one or, at 
most, a few stimulus attributes. Such rotations are seldom used in MDS 
because, to this author's knowledge, there is no reason to believe that 
naturally occurring stimuli would satisfy this criterion. Nor is there any 
reason to believe that rotation to such a criterion will yield a more 
interpretable solution. In some applications, an objective rotation to simple 
structure, such as varimax (Kaiser, 1958) or equimax (Saunders, 1960), will 
yield a highly interpretable solution. Users should not, however, assume that 
such an objective rotational algorithm will automatically produce the most 
interpretable possible solution. 

Figure 4.2 gives the varimax rotation of the original solution matrix in 
Figure 4.1. The varimax solution is little different from the unrotated 
solution, and hence shares its interpretational problems. For this particular 
example, the varimax dimensions are no easier to interpret than are the. 
unrotated dimensions in FIgure 4.1. 

Hand Rotations 

Computers perform objective rotations. People perform hand rotations. A 
hand rotation is one performed by the experimenter and chosen on the basis 
of her or his visual inspection of the unrotated configuration. In practice, 
one can sometimes see by inspection what rotation of the solution would 
yield interpretable dimensions. If dimension I in Figure 4.1 were rotated 
45°, as shown in Figure 4.3, then all of the fast sports would fall at the 



ROTATION 

Football 1-1.08, 0,10) 
: Hod<ey (-I. 08,0.10) 

B05kelball(-O.OI, -0.68) • 

1[ 

Golf (0.83, 0.39). 

Croquet (0.83, 0.39)' 

I 

• Tennis (0.51, -0.29) 

Figure 4.2. Varimax rotation of metric sports dimensions. 

Football (-0.62, 0.90) • 
Hod<ey (-0.62, 0.90)' 

Basketball • 
(-0.53, -0.43) 

SP~ n 

Golf 10.83, -0.39) • 
Croquet 10. 83, -0.39) • 

• Tennis (0.11, -0.58) 

Figure 4.3. Hand rotation of metric sports data 
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positive end. Slow sports would fall at the negative end. Scale values along 
the resulting dimension could be said to reflect the speed of the various 
sports. Rotating dimension II 45°, as shoWn in Figure 4.3, would yield 
an axis with. contact sports at one end and noncontact sports at the other. 
The resulting dimension could be said to reflect the degree of contact in 
each game. 
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68 TORGERSON'S METRIC GROUP METHOD 

One can quickly compute the angles between dimensions I and II in 
Figure 4.2 and dimensions I and 2 in Figure 4.3. The angle between 
dimensions I and I would be 45 0; the angle between dimensions II and I 
would be 315°; the angle between dimensions I and 2 would be 135°; the 
angle between dimensions II and 2 would be 45°. The corresponding cosines 
would be .71, .71, - .71, and .71. Assembling these cosines yields the 
orthogonal transformation matrix 

I 2 

I l.71 
T~ 

II .71 

-.71 J 
.71 

(4.13) 

Postmultiplying the unrotated scale values X in Figure 4.1 by T yields the 
rotated coordinate matrix plotted in Figure 4.3. The resulting dimensions 

- 0.62 0.90 Hockey 
-0.62 0.90 Football 

X* ~ -0.53 -0.43 Basketball (4.14) 
0.11 -0.58 Tennis 
0.83 -0.39 Golf 
0.83 -0.39 ' Croquet 

can be interpreted' as reflecting the degree of contact in and the speed of 
each sport. 

In dimensional applications, finding an interpretable rotation is an 
important step in the MDS process. Several approaches are possible. If the 
original solution is interpretable, then the user need not rotate at all. If the 
unrotated solution is not easily interpreted, then an objective rotation such 
as varimax (Kaiser, 1958) or equimax (Saunders, 1960) can be tried. If 
neither the unrotated solution nor an objectively rotated solution yield 
interpretable dimensions, the user can try a hand rotation. 

DIMENSIONALITY 

To this point, the discussion of Torgerson's method has proceeded as if the 
number of dimensions K were known. In practice, however, it is not known 
and must be estimated in the analysis. In most MDS methods, the user must 
obtain several solutions in different dimensionalities and clioose'b"tweeii­
'them on the basis of three criteria: interpretability; fit to the data, and 
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DIMENSIONALITY 69 

reproducibility. Torgerson's algorithm minimizes the following measure of 
-m:T;;;L~.~;<8ij - LkXikXjk)2, where Xik and xjk are the estimates of 
coordinates for stimuli i and j along dimension k. That is, the algorithm 
minimizes the sum of squared discrepancies between the predicted, 8ij = 

LkXikXjk' and actual scalar products, 8ij. 
Torgerson's method is one of two methods discussed in this book in 

which the fit measure plays little or no role in deciding how many dimen­
sions are required to adequately reproduce the data. There is, however, a 
series of eigenvalues (also called characteristic roots or eigen roots) that do 
playa role in the dimensionality decision. Each eigenvalue is associated with 
one dimension in the solution. For our purposes, the eigenValue associated 
with a given dimension is simply the sum of squared stimulus scale values 
along that dimension. That is, if we let xik refer t9 the estimated scale value 
for stimulus i along dimension k, then the kth eigenvalue is 

(4.15) 

If one takes stimulus I to be hockey, stimulus 2 to be football, 3 to be 
basketball, 4 to be tennis, 5 to be golf, and 6 to be croquet, then in the 
solution of Figure 4.1, the second eigenvalue is simply 

, " -2 -2 + -2 + -2 + -2 + -2 + -2 1\2 = £..JXJ2 = x 12 x22 X 32 X 42 X S2 x62 

= (.19)2 + (.19)2 + (_ .68)2 + (_ .34)2 + (.31)2 

+ (.31)2 = .84. 

(4.16) 

A plot like the one in Figure 4.4 can be useful in determining dimen­
sionality. The vertical axis represents eigenvalues for the unrotated solution, 
and the horizontal axis corresponds to dimensions. The graph is constructed 
by plotting one point for each dimension at a height corresponding to the 
eigenvalue associated with that dimension. For instance, the point corre­
sponding to the second dimension indicates that the eigenvalue associated 
with the second dimension of the uurotated solution was 0.84. 

If the data conform exactly to the model of Eq. (4.1), then the plot 
should level off at exactly (K + I) dimensions, just as the plot in Figure 4.4 
levels off at 3 dimensions. In other_words, there should be an "elbow" in the 
graph one dimension beyond K, the correct number of dimensions. In real 
data that do not conform exactly to the model or in which there is a large 
amount of measurement and sampling error, an elbow may be difficult to 
discern. Indeed, the elbow is difficult to discern in Figure 4.4. In such cases, 
a plot of the eigenvalues may not suffice to determine the correct number of 



70 TORGERSON'S METRIC GROUP METHOD 
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Number of Dimensions 
"Figure 4.4. Eigenvalues plotted against dimensions for the unrotated scaling of sports. 

dimensions. Interpretation and reproducibility of dimensions must also be 
considered. 

Reproducibility can be used as a criterion only when there are two or 
more subsamples. The basic idea is that one should retain as many dimen­
sions in the final solution as emerge consistently in the separate subsamples. 
If one derives separate solutions for each subsample, and there are K 
dimensions that appear consistently in all of the subsarnples, then the final 
solution should contain exactly K dimensions. Each of the subsamples 
should come from the sarne population. 

Interpretability as a criterion requires some subjective judgment on the 
user's part. The basic idea, however, is that a higher dimensiQuaLsollltiQD is 
prefer~ed_()v:eI.aJo;veLdim.ensiOJ}.aLsglIl4on if there are important stimulus 
features that appear in the higher dimensional solution but fail to appear in 
the lower dimensional solution.@onversely, the lower dimensional solution 
is preferred if there are no important stimulus features that fail to appear in 
the lower dimensional solution] 

In our example, neither stimulus feature, degree of contact, nor speed of 
game can be distinctly discerned in the one-dimensional solution, which 
consists solely of the first dimension plotted in Figure 4.1. Both features are 
confounded in the lone dimension of the one-dimensional solution. Only 
after the extraction of two dimensions can the solution be rotated so that 
each stimulus feature corresponds to a unique dimension as in Figure 4.3. 
Because it is more readily interpreted, the two-dimensional solution is 
preferred. 

INTERPRETATION 

Interpretability was discussed above in the section on deciding dimensional­
ity, but a few more comments need to be made about interpreting solutions. 
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Particularly, the phrase "meaningful stimulus features" from the prior 
discussion needs clarification. Such features are typically either orderings or 
groupings of stimuli. 

A substantively meaningful grouping of stimuli is. a set of stimuli that 
cluster together in a region of the multidimensional solution space and that 
possess some common attribute. For instance, in a study of occupations, 
sales jobs may cluster together to form a meaningful grouping. Women's 
magazines (MS., Ladies Home Journal, Vogue, etc.) may group together in a 
study of popular periodicals. 

A meaningful ordering of stimuli is an ordering that corresponds to the 
arrangement of stimuli along an important stimulus attribute. For instance, 
the ordering of the stimuli along dimension I in Figure 4.3 corresponds to 
their ordering by degree of contact. The ordering along dimension II 
corresponds to the ordering of the games by speed. Both of these dimen­
sions represent meaningful orderings because they correspond to important 
attributes of games, speed, and contact. Ideally, the dimensions will be 
rotated so that each represents one of the meaningful orderings. 

Interpreting a solution involves identifying the important groupings and 
orderings of stimuli. For groupings, one must identify the feature or features 
that the members of each cluster share in common. For orderings, one must 
identify the attribute corresponding to the ordering. One way to interpret a 
solution is by simple inspection of the configuration. More formal methods 
are considered in Chapter 8. 

EXAMPLE 

Smith and Siegel (1967) use MDS to derive dimensions of job tasks for the 
position Office of Civil Defense (OCD) director. In three successive stages, 
they identify 34 job functions which, in their opinion, are representative of 
the total tasks performed by OCD directors. Thirty-five supervisory level . 
OCD personnel then rate the dissimilarity of each pair of tasks on an 
II-point scale. For each job task pair, the dissimilarity judgments of the 35 
subjects are pooled to obtain a dissimilarity matrix. 

Torgerson's algorithm was used to obtain a four-dimensional solution. 
Smith and Siegel use an objective rotation called equimax (Saunders, 1960). 
For each of ,the four dimensions, Table 4.2 .shows the functions that have 
the highest positive scale values and the lowest negative scale values. The 
authors summarize their interpretations of the dimensions in the labels they 
assign to each: internal versus external system maintenance (dimension I), 
routine versus emergency programming (dimension II), resource use versus 
resource evaluation (dimension III), and emergency system integration 
(dimension IV). 

--

. 
i 

, 

',I 

i I: 
d 
{I 

, 
j: 

" 
, 

'! il 



72 

Table 4.2. Dimensions of Civil Defense Director Job Tasks. 

Scale Value Job Task 

3.43 

4.21 
4.70 
5.66 

-3.19 
-3.96 
-,4.94 

3.58 
4.46 
4.82 

6.39 
-2.16 
-2.24 
-3.00 
-4.88 

2.81 
4.27 
6.33 

-3.20 
-3.68 

-3.94 
-4.65 

3.79 
4.14 
4.26 
4.91 

-2.11 
-2.49 
-3.26 

-3.35 

-4.90 

Dimension I: Internal vs. External System Maintenance 

Issuing necessary emergency orders and instructions 
to the public 
Prescribing information channels 
Relaying information from higher~Ievel CD organizations 
Informing public and private groups of CD activities 
Assisting in legal actions arising from CD activities 
Accounting for CD funds and property 
Assuring the preservation of essential CD records 

Dimension II: Routine vs. Emergency Programming 

Administering the protected facilities program 
Preparing and presenting a CD budget 
Inspecting and reporting on installations assigned 
to or related to CD 
Accounting for CD funds and property 
Prescribing mobilization procedures 
Evaluating potential emergencies 
Programming the continuity of government 
Establishing the order of succession 
within the CD system 

Dimension III: Resource Use vs. Resource Evaluation 

Accounting for CD funds and property 
Advising on needed CD legislation 
Assisting on legal actions arising from CD activities 
Conducting required research 
Determining the availability' of human and material 
resources 
Assuring the proficiency of CD workers 
Conducting and evaluating CD tests 

Dimension TV: Emergency System Integration 

Advising on needed CD legislation 
Preparing and presenting a CD budget 
Appointing CD technical advisory committees 
Conducting required research 
Prescribing infonnation channels 
Relaying information from higher~level CD organizations 
Maintaining liaison with federal and state military 
groups 
Issuing necessary emergency orders and instructions 
to the public 
Alerting and mobilizing the CD system 

Source: Smith and Siegel (19671. Copyright 1967 by the American 'Psychological Associa~ 
tion. Adapted by permission of the publisher and author. 
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The authors suggest that the obtained dimensions could be used as a 
basis for developing unidimensional, employee evaluation scales. For in' 
stance, since resource evaluation tasks emerged at one pole of dimension III, 
one may wish to develop a corresponding employee evaluation scale. The 
authors go on to suggest that employee selection measures and training 
programs might be planned around the obtained dimensions. 

PROOF: TORGERSON'S FUNDAMENTAL THEOREM! 

Torgerson's method rests on his proof that if one starts from a data matrix 
A with elements of the form 

and one applies the following transformation to those elements 

8*. = --2'(8.2. - 82 - 82 + 82 ), IJ IJ I. .J .. 

then one obtains quantities of the form 

81) = LXikXjk 4 

k 

(4.17) 

(4.18) 

(4.19) 

Although Torgerson did not do so, one can assume without loss of general­
ity that 

LX'k = LXjk = 0 
j 

for all k. (420) 

As preliminary steps in the proof, it is necessary to derive expressions for 
8,2, 8.~, and 82 in terms of the stimulus coordinates x 'k and x jk . . The 
re-expression of 8/ in terms of stimulus. coordinates will be sought first. 

Squaring and expanding the term on the right side of Eq. (4.17) yields 

Oj~ = LX;k + LXJk - 2LXikXjk' (4.21) 
k k k 

Squaring and taking the average over j of the quantity on the left side of Eq. 

tTbroUghOllt this book, an asterisk designates a more technical section containing a proof or a 
description of an algorithm. Readers can omit-such sections without loss of continuity. 

ill 
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(4.17) yields 

TORGERSON'S METRIC GROUP METHOD 

2 1" 2 ~i. = J £ ... Ai' 
j 

(4.22) 

Substituting the quantity on the right side of Eq. (4.21) for the expression 
on the right side of Eq. (4.22) yields 

~i2=~ L(Lxlk + LX]k - 2LXik Xjk) 
j k k k 

(4.23) 

Consider the third term on the right side of Eq. (4.23), -2(l/J)L/£kXikXjk' 
Since X ik does not depend on j, this term can be rewritten as 
-2(l/J)LkXik(LjXjk), According to Eq. (4.20), LjXjk = 0, and hence 
-2(l/J)LkX'ik(LjXjk) = O. Consequently, Eq. (4.23) can be rewritten as 

8;= LX7k + LX~k' (4.24) 
k k 

where x~ = (l1f)LjX]" Equation (4.24) states that ~? can be expressed as 
the sum of squared coordinates for stimulus i plus the sum of the average 
squared coordinates. Both of these sums are taken across the K dimensions. 
Equation (4.24) provides the desired re-expression of ~t'in terms of stimulus 
coordinates. Let's turn our attention now to a similar fe-expression of 8.~. 

Squaring and taking the average over i of the quantity on the left side of 
Eq. (4.17) yields 

2 1" 2 
~.j = I £.,Ai' , 

(4.25) 

Substituting the quantity on the right side of Eq. (4.21) for the expression 
on the right side of Eq. (4.25) yields 

~~ =], L(Lxlk + LX]. - 2LXik Xjk) 
i k k k 

_1""21""2 - I £... ~Xik + I.i..J ~Xjk 
i k i k 

(4.26) 
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Consider the third term on the right side of Eq. (4.26). Since xjk does not 
depend on i, the term can be rewritten as -2(l!I)Lkxjk(L,X'k)' According 
to Eq. (4.20), L,Xik ~ 0, and hence - 2(1/I)LkXjkCL,x'k) ~ O. Conse­
quently, Eq. (4.26) can be written as 

8~ = LX2k + LX]k' (4.27) 
k k 

where. 

Equation (4.27) expresses 8~ in a form directly analogous to the expression 
for 8,2 in Eq. (4.24), and it provides the desired re-expression of 8.~ in terms 
of stimulus coordinates. Before beginning the proof of Torgerson's funda­
mental theorem, Eq. (4.19), we need only re-express 82 in terms of stimulus 
coordinates. 

Squaring and taking. the average over j and i of the quantity on the left 
side of Eq. (4.17) yields 

(4.28) 

Substituting the quantity on the right side of Eq. (4.21) for the expressiou 
on the right side of Eq. (4.28) yields 

8
2

= iJLL(LX}k+LxJk-2LX'kXjk) 
j j k . k k 

= I~LLLxl.+ iJLLLxJk 
ijk ijk 

(4.29) 

Consider the third term on the right side of Eq. (4.29). According to Eq. 
(4.20), L,x'k = LjXjk = 0, and hence -2(l!IJ)L,LjLkX'kXjk = 
-2(l/IJ)LkCL,x,k)CLjxjk ) = O. Consequently, Eq. (4.29)·can be rewrit­
ten as 

82 = '" X2 + '" X2 = 2'" X2 . .. ~.k ~.k ~.k (4.30) 
k k k 

I I' 
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To prove Torgerson's theorem in Eq. (4.19), we need only combine the 
results in Eqs. (4.24), (4.27), and (4.30) with the expression in Eqs. (4.18) 
and (4.21). . 

For the four terms on the right side of Eq. (4.18): Ii;~, Ii;', Ii~, and V, it is 
necessary to substitute the corresponding expressions on the right sides of 
Eqs. (4.21), (4.24), (4.27), and (4.30). These substitutions yield 

(4.31) 

Combining terms and multiplying through by (_·lJ yields the desired 
result. 

8i~· = LXikXjk. 
k 

(4.32) 

Thus one arrives at Torgerson's fundamental theorem expressed originally 
in this chapter by Eq. (4.7). 

OTHER METRIC MODELS 

Torgerson's (1952, 1958) algorithm makes very restrictive assumptions. A 
slightly less restrictive model is the following: 

(4.33) 

where c is an additive constant. One way to analyze such proximity data 
would be to first estimate c, subtract the estimate of c from each proximity 
Ii;j> and then analyze the new data points (Ii;j - c) via Torgerson's algo­
rithm. The problem of first estimating c is often called the additive constant 
problem in MDS (Cooper, 1972). 

One can set the estimate of c equal to the following: 

c ~ (-I) max (lihj -Ii>; -liu)' 
(h,i,j) 

(4.34) 
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If one generates new proximities Yij such that 

ifi=j (4.35) 

ifi *'j, 

then the proximities Yij will satisfy the triangular inequality of Eq.(1.4). The 
additive constant estimate c is the smallest value one can subtract from each 
proximity Bij (i '" j) that will ensure that the transformed data satisfy the 

. triangular inequality (Carroll and Wish, J974a). 
Ramsey (1978, 1980) developed maximum likelihood estimates for the 

stimulus coordinates. He proposed two models. The first assumes that each 
proximity Bij is a normally distributed random variable with unknown mean 
I'ij = d ij and variance a 2

• The other mode! assumes that the natural 
. logarithms of the data In(Bij ) are normally distributed random variables 

with unknown means I'ij = d ij and variance a2
• The maxinium likelihood 

theory on which these algorithms are based makes it possible to develop a 
fit measure that is approximately distributed as a chi square variable under 
the null hypothesis represented by the scaling model. Early versions of 
Ramsey's algorithm required so much computer time that they were practi­
cal ouly for small data sets. If the computational problems can be overcome, 
the maximum likelihood approach may enable researchers to examine the fit 
of the model to their data more rigorously than has been possible with other 
approaches. 

SUMMARY 

Torgerson (1952) assumed that ·dissimilarities were equal to distances in a 
Euclidean space. From this assumption, he derived one of the first multidi­
mensional scaling algorithms. Using data that satisfy Torgerson's. metric 
assumption, one can solve for the coordinate diniensions by applying a 
principal components analysis to the scalar product matrix 11*. 

One can decide upon the number of dimensions by considering the 
replicability of dimensions across subsamples, the interpretability of solu­
tions with varying numbers of dimensions, and a diniensions-by-eigellvalues 
plot. The solution can be left unrotated, it can be rotated by hand, or it can 
be rotated by some objective algorithm such as varimax (Kaiser, 1958) or 
equiniax (Saunders, 1960). Of these three rotation options, the one that 
gives ihe most interpretable orientation of the axes is preferred. Interpreting 
the solution involves identifying groupings of stimuli or orderings of stimuli 
that correspond to meaningful stiniulus attributes. 

I 
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Smith and Siegel (1967) use Torgerson's algoriIhm to derive dimensions 
of job task performance. They conclude that Ihe dimensions could be used 
as a basis for developing unidimensional employee evaluation scales and for 
planning employee training programs. 

PROBLEMS 

1. Imagine that matrix I!. below contains dissimilarity data for all possible 
pairs of eight countries. Compute the scalar product matrix I!. * from the 
matrix of dissimilarities. 

An Ar Au Ch Cu J US Z 

Angola 0.00 lAI 1.00 1.00 IAI lAI 1.73 0.71 

Argentina 1.41 0.00 1.00 1.73 1.41 lAI 1.00 IAI 

Australia 1.00 1.00 . 0.00 IAI 1.73 1.00 1.41 1.00 

China 1.00 1.73 lAI 0.00 1.00 1.00 1.41 1.00 

4= Cuba 1.41 IAI 1.73 1.00 0.00 1.41 . 1.00 1.41 

Japan 1.41 1.41 1.00 1.00 1.41 0.00 1.00 1.41 

United States 1.73 1.00 1.41 1.41 1.00 1.00 0.00 1.73 

Zimbabwe 0.71 1.41 1.00 1.00 1.41 lAI 1.73 0.00 

2. . Use a principal components analysis to extract three components from 
Ihe scalar product matrix computed in Problem I. Be sure to have all 
eight eigenvalues printed. Also, print both Ihe unrotated and varimax 
rotated solutions in Ihree dimensions. Then answer each of the follow­
ing questions. 
a. What are the scale values along the firstthree unrotated dimen­

sions? Can you interpret these. dimensions? 
b. What are the scale values along the first three varimax rotated 

dimensions? Can you interpret these dimensions? 

c. What are the eight eigenvalues? 

3. Construct a dimensions-by-eigenvalues plot. How many dimensions 
does this plot suggest should be retained? 

4. Apply the transformation below to the varimax rotated dimensions? 
What are the obtained scale values? Interpret each of the dimensions. 

[ 

.63 
T = .55 

-.59 

.53 
-.63 
- .63 

- .63] 
.59 

-.55 
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Answers 

I. An Ar Au Ch Cu J US Z 

An .70 -.21 .17 .17 -.21 -.34 -.71 A5 
Ar -.21 .89 .26 -.74 -.12 -.24 .39 -.21 
Au .17 .26 .64 -.37 -.74 .14 -.24 .17 

Il= Ch .17 -.74 -.37 .64 .26 ,14 , -.24 .17 
i 
I 

Cu - .21 -.12 -.74 .26 .89 -.24 .39 -.21 I, 
,i 

J -.34 -.24 .14 .14 -.24 .64 .26 -.34 I! 
'Ii 

US -.71 .39 -.24 -.24 .39 .26 .89 -.71 
Ii Z A5 -.21 .17 .17 -.21 -.34 -.71 .70 

'I 
i 

l' 
~ (. 

h 
2. a. I II III 

\; 

An -.73 .00 -.21 
i 

Ar .42 , .71 -.45 ! I;; 
Au -.28 .71 .26 I' 
Ch' -.28 -.71 .26 I: 

X= Cu A2 -.71 -.45 I' 
" J .24 .00 .77 i 

US ,95 .00 .04 
Z -.73 .00 -.21 

These dimensions are difficult, if not impossible, to interpret. J 
~~ 
" 

I II II 
' .\ 

b. 
I' 

-.75 .10 .10 
,! 

An 
rt 
, 

Ar .18 -.92 .08 lil 
Au -.14 -.25 .75 I~! 
Ch -.14 .75 -.25 

,~. 

H 
X= Cu .18 .08 -.92 l:· r 

J .56 Al .41 'I' li:' 

US .87 -.27 -.27 
., 
:1: 

-.75 .10 .10 
,11, 

Z 

!I 
I 
I 
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c. 

TORGERSON'S METRIC GROUP METHOD 

These dimensions are difficult, if not impossible, to interpret. 

Dimension I II III IV V VI VII VIII 

Eigenvalue 2.55 2.01 1.22 .25 .02 .01 -.00 -.07 

3. Figure 4.5 suggests that K = 3 because there is an elbow above the 
fourth dimension. 

4. I II III 

An - .48 - .53 .48 
Ar -.45 .63 -.70 

Au -.67 - .39 -.48 

Ch .48 -.39 .67 

X= Cu .70 .63 .45 

J .34 -.22 -.34 

US .56 .80 -.56 

Z -.48 -.53 .48 

Along the first dimension, stimuli are roughly arrayed along an axis 
running from north to south. The countries in the southern hemi­
sphere-Angola, Argentina, Australia, and Zimbabwe-fall at the 
negative end of this axis. Countries in the northern hemisphere-China, 
Cuba, Japan, and the United States-fall at the positive end of this 
dimension. The arrangement from north to south is not perfect, how-

3.00 

'" " 2.00 

" "iii 
1.00 > c: 

" '" 0.00 
iii 

-1.00 

I 11 ill fiT Y 'lI lZU:m:r 
Number of Dimensions 

.Figure 4.5. Dimensions~by-eigenva1ues plot for metric scaling of countries' data. 
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ever; note, for instance, that Cuba has a higher scale value than the 
United States, even though Cuba is farther south. Nevertheless, dimen­
sion I can be interpreted as roughly reflecting the locations of the 
countries on a north-south axis. 

Dimension II seems to be an east-west axis. The countries in the 
western hemisphere,-Argentina, Cnba, and the United States-are 
located at the positive end of this dimension. Countries in the eastern 
hemisphere-Angola, Australia, China, Japan, and Zimbabwe-are 
found at the negative end. 

Dimension III appears to be a Marxist-capitalist dimension. Coun­
tries headed by Marxist governments (in J980)-Angola, China, Cuba, 
and Zimbabwe-appear at the positive end of this dimension. At the 
negative end, one will find the capitalist countries-Argentina, Australia, 
Japan, and the United States. 

I~' 


