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Multidimensional scaling can be considered as involving three basic 
steps. In the first step, a scale of comparative distances between aU pairs 
of stimuli is obtained. This scale is analogous to the scale of stimuli obtained 
in the traditional paired comparisons methods. In this scale, however, 
instead of locating each stimulus-object on a given continuum, the distances 
between each pair of stimuli are locat~ on a distance continuum. As in 
paired compansons, the procedures for obtaining a scale of comparative 
distances leave the true zero point undetermined. Hence, a comparative 
distance is not a distance in the usual sense of the tenn, but is a distance 
minus an unknown constant. The second step involves estimating this 
unknown constant. 'Yhen the unknown constant is obtained, the com­
parative distances can be convert~ into absolute distances. In the third 
step, the dimensionality of the psychological space necessary to account for 
these absolute distances is determined, and the projections of stimuli on 
axes of this space are obtained. A set of analytical procedures was developed 
for each of the three steps given above, including a Jeast-squares solution 
for obtaining comparative distances by the complete method of triads, two 
practical methods for estimating the additive constant, and an extension of 
Young and Householder's Euclidean model to include procedures for obtain­
ing the projections of stimuli on axes from fallible absolute distances. 

Introduction 

The traditional methods of psychophysical scaling presuppose knowledge 
of the dimensions of the area being investigated. The methods require 
judgments along a particular defined dimension, i.e., A is brighter, twice as 
loud, more conservative, or heavier than B. The observer, of course, must 
know what the experimenter means by brightness, loudness, etc. In many 
stimulus domains, however, the dimensions themselves, or even the number 
of relevant dimensions, are not knOWll. What might appear intuitively to 
be a single dimension may in fact be a complex of several. Some of the 
intuitively given dimensions may not be necessary-it may be that they 
faIl be accounted for by linear combinations of others. Other dimensions of 
importance may be completely overlooked. In such areas the traditional 
approach is inadequate. 

Richardson, in 19~ (3; see also Gulliksen, 1) proposed a model for 
multidimensional scalmg that would appear to be applicable to a number of 

-nus Irtudy was carried out while the author was an Educational Testing Service 
t:~~triC Fellow at Princeton University. The author expresses his appreciation to 
n p"""'O'" adviserJ Dr. H. Gulliksen, for his guidance throughout the study and to Dr. 
... • teen, Jr., for valuable asaistance on several of the derivatioDl. 
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these more complex areas. This model differs from the traditional scaling 
methods in two important respects. First, it does not require judgments 
along a given dimension, but utilizes, instead, judgments of similarity between 
the stimuli. Second, the dimensionality, as well as the scale values, of the 
stimuli is determined from the data themselves. 

Multidimensional scaling may perhaps best be considered as involving 
three basic steps. In the first step, a scale of comparative distances between 
all pairs of stimuli is obtained. The second step involves estimating an 
additive constant and using this estimate to convert the comparative dis­
tances into absolute distances. In the third step, the dimensionality of the 
psychological space necessary to account for these absolute distances is 
determined, and the projections of the stimuli on axes of this space are 
obtained. 

The Scale of Comparative Distances 

The scale of comparative distances obtained in the multidimensional 
methods is analogous to the one-dimensional scale of stimulus-objects obtained 
in the traditional paired comparison type methods. 

In the one-dimensional methods, the obtained scale locates the stimulus­
objects with respect to one another on the given continuum. For example, 
given four stimulus-objects designated 8 1 , 8 2 , 8 a , and 8 4 , the one-dimen­
sional procedure might yield the following scale: 

5, 52 

In this scale, the locations of the stimuli relative to one another only are 
determined from the data. The zero point of the scale is arbitrary. While 
the usual procedure is to locate the zero point so as to coincide with the 
stimulus having the lowest scale value, any other finite location on the con­
tinuum would serve equally well. 

In the analogous scale of comparative distances obtained in the multi­
dimensional procedures, the element, instead of being a stimulus-object, is a 
distance between two stimuli. Thus, given the same four stimulus-objects, 
the scale of comparative distances locates, with respect to one another on a 
distance continuum, the SL-.r inter-stimulus distances, du , dI3 , da , dn , du , 

and du : 

The locations of the inter-stimulus distances relative to one another only are 
determined from the data. The zero point is again arbitrarily selected. It 
is important to note, however, that a comparative distance is nota "distance" 
in the usual sense of the term, but is a distance minus an unknown constant. 
In order to obtain absolute distances between stimuli, it is necessary to 
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estimate this constant. This is equivalent to estimating the true zero point 
of the scale of comparative distances. Thus, a comparative distance hilt; 
plus an unknown additive constant C gives the corresponding absolute 
distance dil; : 

hil; + C = dil • 

The Additive Constant 'for Converting Comparative Distances into Absolute 
Distances 

In estimating the additive constant, it is assumed that that value which 
will allow the stimuli to be fitted by a real, Euclidean space of the smallest 
possible dimensionality is the value wanted. Consider, for example, five 
points having the following comparative interpoint distances hi. U, k = 1, 
2, •.• , 5; j ¢ k): 

h12 = 1, h14 = 1, ~3 = 1, h35 == -1, 

h13 = 2, h15 = -1, h24 == 4, ' ha4 = 1, h45 = o. 
With these comparative distances the value of the additive constant 

which will allow the stimuli to be fitted by a real, Euclidean space of the 
smallest possible dimensionality is 4. H we add 4 to each of the comparative 
distances to convert them into absolute distances we obtain 

dl2 = 5, d14 = 5, dn = 4, du = 3, du = 3, 

dl3 = 6, d24 = 8, d34 = 5, d23 = 5, du = 4. 

The five stimuli can be plotted in a two-dimensional space: 

s, 

s. 

Note that for any smaller value of the additive constant the points do 
not exist in a real Euclidean space. For example, if 1, 2, or 3 is added, then 
d45 + dn < ~, , an impossible relationship in real Euclidean space. Also, 
for any larger value of the additive constant, the points lie in a real space of 
dimensionality greater than two. 
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Determination of the Dimensionality of the Psychological Space and the Projec­
tiom of the Stimuli on Axes of the Space from the Absolute Distances Between the 
Stimuli 

Young and Householder (5) have given a method for determining whether 
a set of absolute interpoint distances can be considered to be the distances 
between points lying in a real Euclidean space. They also have given, pro­
vided that the distances can so be considered, methods for determining the 
dimensionality of the space, and the projections of the points on a set of 
orthogonal axes of the space. Their theorems involve two basic matrices, 
B. and F. 

If we let 

i, j, and k be alternate subscripts for n points (i, i, k = 1, 2, ••• , n) and 
dil , di. , and dt" be the distances between the points, then Bi is an 

(n - 1) X (n - 1) symmetric matrix with elements 

(1) 

The element bit may be considered to be the scalar product of vectors 
from point i to points i and k. This follows directly from the cosine law. 
That is, given the three points i, i, and k, 

which rearranged becomes 

dHd", cos Om = !(tf.i + tf.. - tf;.,. (3) 

From Equations 1 and 3, it is seen that bi • = dHd •• cos OJ •• , the scalar product 
of vectors from point i to points i and k. Matrix B. is thus a matrix of scalar 
products of vectors with origin at point i. There are, of course, n possible . 
B. matrices, since i may assume any value from 1 to n. 

Matrix F is an (n + 1) X (n + 1) symmetric matrix of squares of inter­
point distances bordered by a row and column of ones as follows: 

o 
~1 

F = tf;1 

d!J 
1 

J:, 
o 

d!. 
1 

tf.. 

o 
1 

1 
1 

1 

1 
o 

(4) 
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Young and Householder have shown that: 

1. I! any matriX Bi is positive semidefinite, the distances may be con­
sIdered to be the distances between points lying iB a real Euclidean 
space. 

2. The rank of any positive semidefinite matrix B, is equal to the di­
mensionality of the set of points. 

3. The rank of matrix F is two greater than the dimensionality of the 
set of points. 

4. Any positive semidefinite matrix B. may be factored to obtain a 
matrix A, such that 

B. = AiA~ • (5) 

If the rank of B. is r, where r :::; (n - 1), then matrix Ai is an (n - 1) 
X r matrix of projections of points on r orthogonal axes with origin 
at the ith point of the r-dimensional, real Euclidean space. 

It is interesting to note that except for Richardson's original experiment. 
(only an abstract of which has been published) only one person, Klingberg, 
(2) has used the model. It may well be that one of the reasons for the lack of 
experimental investigation in this area is that no clear statement of analytical 
procedure has been published. The problem of precisely how to proceed in 
obtaining comparative distances from proportions of judgments has not been 
adequately answered for either Richardson's method of triadic combinations or 
Klingberg's method of multidimensional rank order. While the analogy 
between the logic of paired comparisons and both of these methods is clear, 
the procedures cannot be directly applied in obtaining an efficient estimate. 
The least-squares solution for paired· comparisons scales cannot be used 
because the analogous proportion matrix contains a rather large number of 
\7acant cells-neither multidimensional method obtains judgments of the 
differences in distance between all possible pairs of distances, but only between 
pairs having one stimuluS in common. Furthermore, in reducing the matrix 
of distance-differences between pairs to a scale of comparative distances, 
one is almost overwhelmed by the great number of possible modes of attack­
each likely to give a somewhat different answer due to error in the observed 
data. 

The problem of how to obtain a best estimate of the unknown additive 
constant has not been answered. The method used by. Klingberg is quite 
tedious (it involved obtaining two tenth-order polynomials from the fifth­
order minors and then solving for the unknowns) and does not insure that 
the answer obtained is a best estimate, or that it even approximates the value 
desired. 

. Similarly, while Young and Householder ~ve adequate procedures for 
obtaining projections of points on axes from distances when the data are 
infallible a number of difficulties arise when fallible data are employed. , 
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The purpose of the present paper is to present a set of analytical pro. 
cedures for multidimensional scaling, including, as far as possible, routine 
procedures for obtaining comparative distances, for estimating the additive 
constant, and for obtaining projections of stimuli on axes when fallible 
absolute distances are given. We shall first consider the complete method 
of triads for obtaining comparative distances between the stimuli. Follow­
ing this, the problem of obtaining projections of stimuli on axes from fallible 
absolute distances will be discussed. Finally, we shall consider various 
methods for estimating the unknown additive constant. 

The Complete Method of Triads for 
Obtaining Comparative Distances Between Stimuli 

The stimuli are presented to the subject in triads. The judgment re­
quired of the subject is of the form: "Stimulus k is more similar to stimulus 
j than to stimulus i." With n stimuli, there are n(n - l)(n - 2)/6 triads. 
In each triad, each stimulus is compared with each other pair, making a 
total of n(n - l)(n- 2)/2 judgments for each subject. From these judg­
ments we obtain the proportion of times any stimulus k is judged more 
similar to stimulus j than to i. 

These proportions can be arranged in the n matrices lP" where k, i, 
and j are alternate subscripts for the stimuli. k gives the number of the 
matrix, i is a row index, and j is a column index. The element "PH is the 
proportion of times stimulus k is judged closer to stimulus j than to i. The 
matrices ~H have vacant cells in the principal diagonal, and in the kth row 
and column. * The matrices are such that the sum of symmetric elements 
is unity--e.g., "P.A + "Pl. = 1. For example, given four stimuli, 1, 2, 3, and 
4, there are four "P oj matrices. The .second matrix (k = 2) is illustrated below: 

,PH 

1 2 3 4 

1 2P13 2Pl4 

2 
3 2P3l 2P34 

4 2V4.1 ,pl3 

The first problem is to transform the proportions "PH into differences in 
distances kXiI' We shall assume that the proportion of times stimulus k is 
. judged closer to stimulus j than to i is a function of the difference in the 

·It might be noted that the elements in the kth row and column could be obtained 
experimentally. However, since the method would ordinarily be used in connection with 
supraliminal distances, the experimentally determined proportions would be either .00 
or 1.00. As in paired comparisons, proportions of .00 and 1.00 cannot be utilized. 
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distances, dt ; - dt ; = tXi; , the function being 

j i"''' 1 -iz • 
• Pii = _ r e dx. 

-(I) -v 7r 
(6) 

tXii is thus V2 times the deviate of the unit normal curve measured 
in IT units from the mean. This is analogous to Thurstone's Case V in paired 
comparisons (4) and is the same assumption used previously by Richardson 
(3). 

Making this transformation we obtain the n matrices ,.xii' These 
matrices are skew symmetric (.x,,, + .xAg = 0), have zero diagonal elements, 
and have vacant cells in the kth row and column. 

We have n(n - l)(n - 2)/2 independent observations of differences in 
distances .,xu from which we wish to determine n(n - 1)/2 comparative 
distances h;t. Since in(n - 1) - 1 differences in distances are sufficient to 
determine a matrix of comparative distances, it is apparent that the data 
are considerably overdetermined. There are, of course, a large number of 
sets of !n(n - 1) - 1 differences in distances which could be used. Also, 
there are many different ways of obtaining the comparative distances from 
each set. With fallible data, the matrices could be expected to differ some­
what from each other. 

The first problem, then, is to find a best estimate, in a least-squares 
sense, of the matrix of comparative distances hit in terms of the available 
data. 

The element "Xii = dii - dt ; + .ei; , where dit and dki are absolute 
distances between stimuli k and i, and k and j, respectively, and .eij is an 
error. * It would seem that we want that set of interpoint distances which 
minimizes the sum of squares of the errors .eij. For a least-squares solution, 
then, we wish to select the distances to minimize the following function: 

.. .. .. 
2F = L: L: L: [iXi; - (di• - d.;) r· 

• i • 
i .. l i.-I 

i~} 

(7) 

If we define a set of matrices r.Eij with elements (.xu - dll + di;), it is 
seen that 2F is equal to the sum of squares of elements of the matrices .ElI • 

Let g and h correspond to two particular stimuli with d.l = d •• , the 
.. distance between them. The term d,,. (or dA,) occurs only in the error matrices 

,Eii and "Ell as follows: 

in .E ii the hth column contains the elements "x", - di • + d,. , 
the hth row contains the elements ,xA; - d", + d,i ; 

in .E ii the gth column contains the elements ,.x •• - di • + dl , , 

the gth row contains the elements lXoi - d.l + dAj • 
. *iXii is also equal to the difference .be~wee~ the ~mparaf:ive disf.s.!1ces, since ~be 

difference in absolute distances dlt - du 18 Identical WIth the difference In comparative 
distances (d •• - (J) - (d.i - (J). 
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To minimize 2F, we first take the derivative of F with respect to d... We 
shall designate this derivative as F'. It is apparent that the derivatives of 
all terms of F except those containing the element d.,. vanish. Therefore, 

.. .. 
F' = L: (,x.,. - d., + d.A) - L: (,xA; - dA• + d,;) 

• i 
i"'t~ iP"II." 

.. .. 
+ L: (IX •• - du• + dl ,) - L: (.x,; - d.l + dr.;). (8) . ; 

.,. •• A i", •• A 

But, since matrices .E.; and "Ei; are skew symmetric, 

L: (,x." - d •• + d •• ) = - L: (,xA; - db + d,;) , (9) 
i ; 

'''' •• ' i"~lIl" 
and 

L: (AXi, - d .. + dh ) = - L: (AX,; - d,,. + dM ). (10) 
i ; 

''' •• 1 ;",,,.,,, 

Therefore, we may write 

F' = 2 L: (,xi" - d., + d.A) + 2 L: (,.Xi. - d .. + dA.). (11) 
i i 

i .... " i .... A 

Setting F' equal to zero, and summing over each term, we find 

L: ,x .. - L: dig + (n - 2)d." + L: ,.x •• - L: d.,. 
...; i 'Ii 

.. ", •• A ,,,.... '''".'' ." •• A 

+ (n - 2)d". = O. (12) 

Remembering that d., = d"" = 0, and that the diagonals and kth row 
and column of alllXi; matrices are vacant, we can write: 

L: ,x." - L: d., + (n - 2)d.,. + L: "Xi, - L: d .. 
iii i 

.JII'f" ,.,., 

+ (n - 2)dA• = O. (13) 

Subtracting d,. from - L: d i , and from - L: du., adding d. l to (n - 2)d.l 
i i 

i .. " i", 
and (n - 2)dh , and remembering that d." = d •• , we have 

L: .Xil - L: d i • + (n - I)d •• + L: "Xi, - L: d i • 
iii i 

+ (n - I)d •• = O. (14) 

Summing over g, g ¢ h, we have 

L: L: ,x .. - E L: dig + (n - 1) Ed,,, + L: E .Xi. 
tI i • i •• i 

... A ...... • .. " ... " 

- (n - 1) E d", + (n - 1) Ed •• = O. (15) 
• • .... 
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L LAX,. = 0, . , 
, .. A 

L d,r. = L d1.; 
; . .... 
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(16) 

(17) 

L L .xIA - L L d •• + (n - 1) L d.A = o. (18) 
, oj • i , .... . ... 

Subtracting ~ do. from L ~ do. and adding L d •• to (n - 1) L d •• , we . ,. . . .... 
see, from 'Equation (17), that 

L L .x'A - L L do. + n L d •• = O. (19) 
• oj • oj • 

... A 

Rearranging, dividing by n(n - 1), and remembering that cells ,x •• are vacant, 
we find 

1 1 '" 1 '" 
n(n - 1) ~ ~ .x" = n(n _ 1) ~ ~ dl • - (n _ 1) £.; d.A 

• 
(20) 

Also, if we divide Equation (14) by 2(n - 1) and rearrange, we obtain 

2(1& ~ 1) [ ~ dl. + ~ dt.] - d.r. = 2(n ~ 1) [ ~ ,x". + ~ ,.x1.J. (21) 

It will be convenient to define the averages in Equations (20) and (21) 
as follows: 

1 1 " d.r. = (n _ 1) ~ dOl = (n _ 1) £.; d.A , 

d .• = (n ~ 1) ~ di , , 

d •• = ( 1 1) L L do. , nn - i • 

.x .• = (n ~ 1) ~ ,xiA , 

.x .• = (n .: 1) ~ "x,. , 

.X.r. = ( 1 1) L L ,xu • nn - •• 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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Mter substitutions have been made for the appropriate terms, Equation (21) 
becomes, 

!(d .• + d. h) - d.h = !(.X.h + AX •• ), 

and Equation (20) becomes 

.X.A = d .• - d.Io , 

and, when h = g, 

.X •• = d .. - d .•• 

Substituting for d .• and d. A in Equation (28), we have 

(28) 

(29) 

!(d .. - .X .• + d .. - .X.h) - t../a = !(.x.l + AX •• ), (30) 

which rearranged becomes 

(31) 

When g = j, h = k, the comparative distance h;k = d." - d... Since 
the x-values are functions of the observed proportions (Equation (6», Equa­
tion (31) gives the comparative distances as functions of the observed data. 
Equation (31), then, gives a rather straightforward method for obtaining 
the best estimate, in a least-squares sense, of the matrix of comparative 
distances. 

Obtaining Projections of Stimuli on Axes from Fallible Absolute Distances 

For a situation in which the data are not fallible and in which absolute 
distances are given, Young and Householder have shown (a) how to deter­
mine if the stimuli lie in a real Euclidean space, (b) if they do, how to deter­
mine the dimensionality of the set of points, and (c) how to obtain the 
projections of the points on an arbitrary orthogonal reference system. This 
reference system may then be rotated to the "most meaningful" dimensions, 
if criteria for such are available. 

We saw that if matrix B, (Equation 5) is positive semidefinite, the 
stimuli lie in real Euclidean space. The rank of B. (or two less than the rank 
of matrix F) is then equal to the dimensionality of the set of stimuli. Matrix 
B, can be factored to obtain projections of the stimuli on an arbitrary set of 
orthogonal axes. 

Matrix B, , however, is constructed by placing the origin arbitrarily at 
one of the stimuli. With errorless data, the results will be identical (except 
for the orientation of axes and location of the origin) for each of the n possible 
matrices B;(i = 1, 2, ..• , n). With fallible data, however, each point is 
somewhat in error. Assuming a true rank considerably less than the number 
of points, each matrix B. will yield different results. We wouid then have the 
problem of deciding which B, matrix gives the best solutjon~ 
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One solution to this problem would be to place the origin at the centroid 
of the stimuli. This procedure would give a unique solution and would tend 
to allow the errors in the individual points to cancel each other. An origin at 
the centroid would, on the average, be less in error than an origin at any 
arbitrary stimulus. The problem would seem to be to find a convenient 
method of obtaining a matrix B* with origin at the centroid of the stimuli 
instead of at one of the stimulus points. ' 

We shall use the following notation: 

m = axes (m = 1, 2, ... , r), 
j,k = points (j, k = 1, 2, ... , n), 

i = point taken as the origin, 
ajm = projection of point j on axis m, and 
d jk = distance between points j and k; 

and take as given Equations (1) and (5): 

B. = AA' 
bjt = ! (d~j + d~t - d~t), where point i is taken as the origin. From 

Equation (5) it is seen that . 
bjt = L: al.a".. • (32) .. 

We shall, however, consider B. to be an n X n matrix with the ith row 
and column composed of zero elements. In like manner A is n X T with 
the ith row composed of zero elements. 

We wish to translate the axes from an origin at point i to an origin at 
the centroid of all n points. 

Let A * = 1/ aim> II be the desired matrix of projections of points j on 
axis m* of the new coordinate system with origin at the centroid of the n 
points. 
Then 

ai .. > = at. - c. , (33) 

where 

1~ .•. f °ts c .. =- L.J at .. == the average proJ ectlOn 0 porn on 
n i-I . 

(34) 

axis m == projection of centroid on axis m. 

B* == A* A*' == 11 bTl /I, (35) 

• 
bTl = L: ai • .a .. -",· (36) .. 
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Substituting, we have 
r 

brl = L: (al .. - c ... )(ai .. - c"') 

r r r r 

= L: ai",a.", - L: ai"'c", - L: ai",C .. + L: c",C", • (37) 
'" .. .. 

From Equation (34) it is seen that 

But 

t ai ... t. a; ... (39) 
... j 

and 

(40) 

Substituting, we have 

Equation (41) gives a routine method of translating a matrix E, with origin 
at point i to an equivalent matrix B* with an origin at the centroid of the 
points. It makes no difference, of course, which of the n matrices B, is used 
in obtaining matrix B*. 

Matrix B*, then, is the B-matrix we wish to factor to obtain projections 
of stimuli on axes. 

Estimating d .. , the Un!rn(JW1/, Additive Constant 

The procedures of obtaining dimensionality and projections on axes 
discussed in the preceding section require absolute distances as given data. 
When the given data are comparative distances (ho• = d .. - d;l)t, the un­
known constant must be estimated to convert the comparative distances 
into absolute distances. We shall first consider the case where the data are 
not fallible, after which we shall discuss procedures for fallible data. 

1. Estimating d .• from errorless comparative distances 

With errorless data, in order that the stimuli be considered as lying in a 
real Euclidean space of r dimensions, the B, matrix must be positive semi· 

tcomparative distances with signs reversed, actually (Asa ... - ~sa). 
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definite and have a rank equal to T. This is equivalent to the statement that 
T latent roots of B, must be positive and the remaining (n - r)equal to zero. 

The value of d .. desired is the value which vn"ll permit the location of the 
stimuli in a real, Euclidean space of the smallest possZ"ble d£mensionaUty. In 
terms of the matrix B*, the value of d .. desired is that value which results in 
the positive semidefinite B* with the lowest rank. In terms of the latent 
roots, this becomes that value which results in a matrix B* with the largest 
number of zero roots under the condition that the remaining non-zero roots 
are all positive. 

This value can be determined, although it involves a tremendous amount 
of labor. The straightforward solution would be as follows: 

1. Construct matrix B* from the given data (d;. = d .. - hj .). 

2. Obtain the characteristic equation: 

IB* -)J 1= O. 

3. Set the last term equal to zero and solve for the real, positive values 
of d... This term will be an (n - 1)th degree polynomial in d... One 
of these values is the value desired. 

4. Substitute each of the values for d.. in the complete characteristic 
equation. Inspection of these equations shows which value of d .. 
yields the largest number of zero roots. 

5. The value which yields the largest number of zero roots with the 
remaining roots all positive is the value desired. 

A "short-cut" procedure would be to evaluate the determinant of B* 
directly. This determinant is the last term of the characteristic equation. 
One could then obtain the real, positive values of d .. as in (3) above. Each 
value could then be substituted for d .. in B*. The latent roots of B* could 
then be computed for each real positive value of d... One would be the 
desired value. This method would also involve a prohibitive amount of labor. 

A third method would be to first estimate the dimensionality of the set 
of stimuli. To check the estimate, one could obtain an estimate of d •. by 
eValuating one (or more) of the principal minors of B* having an order equal 
to one greater than the estimated dimensionality. This estimate could then 
be substituted into B* and the latent roots calculated. 

There are a number of other methods possible involving the principal 
minors of the B* matrix. t In general, they would all hinge on the fact that 
the correct estimate of d .. , if used in B* results in (a) all principal minors of 

tOne could also use the matrix F (Equation 4) to obtain the value of d •• which 
'Would minimize the dimensionality of the set of stimuli since it is known .tha~ the.rank of 
F is two greater than the rank of B.. There '!Owd seem t? be little pomt.m this, hl?w­
ever, since F is a larger matrix, therefo~ involVIng more ~OW! proced~ m eva1ua~g 
the determinants and since no properties of F have been given fro'!l which to determiZle 
'Whether the valu~ of d •• obtainoo will allow the stimuli to be placed m a rtal spaee. 
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order greater than the dimensionality of the stimuli being null, and (b) all 
principal minors of order equal to or less than the dimensionality being non­
negative. 

It is interesting to note that unless all points are equidistant from each 
other (in which case things collapse down to zero dimensions) it is always 
possible to obtain an estimate of d .. in which the rank of B* is at least two 
less than the number of stimuli. Thus before one could place any confidence 
in the obtained dimensionality of the stimuli, the rank of B* would have 
to be smaller by three than the number of stimuli and preferably considerably 
smaller. 

All of these methods require a great deal of labor. In addition, when 
fallible data are used, it is doubted whether the methods would give the 
solution we wish. We would probably never obtain a positive semidefinite B* 
matrix with a rank less than the number of stimuli minus two from fallible data. 

2. Estimating d .. from fallible comparative distances 

If we could obtain a positive semidefinite B* whose non-zero roots con­
sisted of a few large positive roots and a number of small positive roots by 
the methods outlined in the previous section, we could probably discard the 
small roots and conclude that the true dimensionality is equal to the number 
of large positive roots. Even in this case, however, there would probably 
be a better estimate of d... In the above example we have essentially as­
sumed that any error must be such as to change the zero roots to positive 
values. It would be more reasonable to assume that errors would tend to 
change some zero roots in the positive direction and some in the negative 
direction. If we think of 3 points lying in a line so that dl2 + d23 = dl3 , the 
former would hold that any error would tend to make (d12 + e12) + (d:3 + 
en) > (d13 + en), whereas the .latter would hold that (dl2 + e12) + (d23 + 
e23) < (d13 + en) is equally likely. 

This means that with fallible data the condition that B* be positive 
semidefinite as a criterion for the points' existence in real space is not to be 
taken too seriously. What we would like to obtain is a B*-matrix whose 
latent roots consist of 

1. A few large positive values (the "true" dimensions of the system), 
and 

2. The remaining values small and distributed about zero (the "errorJt 

dimensions). 

It may be that for fallible data we are asking the wrong question. Con­
sider the question, "For what value of d •. will the points be most nearly (in 
a least-squares Sense) ,in a space of a given dimensionality?" When one is 
interested in, or has reason to suspect, a one-dUnensional case, the best d .• 
in a least-squares sense is rather easy to obtain. In a one-dimensional set 
of points, d ii + dil = dil + e where) is between k and i, and e is an error. 
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In terms of available data (d .. - du• = hiJ;), this becomes 

d.. - kif + d.. - hit = d.. - hal + e 

d .. + hit - hi; - kil: = e. 
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The d .. which will minimize the sums of squares of all of the e's would 
.seem to be the d .. desired. If we let 

"( - - - 2 2F = £..J d .. + hit - hiT. - hij), 
J:>i>i 

(42) 

then, to minimize 2F, we take the derivative of F with respect to d .. and set 
it equal to zero. Designating this derivative as F', we have 

F' = E (hilo - hi!: - kif) + E d .. = 0, (43) 
1>;>_ l>j>, 

. which rearranged becomes 

E d .. = E (h ii + hll - hill. 
A>i>i A>i>' 

(44) 

Dividing by n(n _ 1~(n _ 2)' we find 

6 ,,- - -
d .. = ( _ 1)( _ 2) .L. (hi; + hiA - hit). n n n I:>i>' . 

(45) 

In the one-dimensional case, it will ordinarily be possible to obtain the 
order of the n stimuli. If we define a symmetric matrix HiA (j designates 
rows, k designates columns, i, k = 1, 2, ••• , n) composed of elements hiA , 
the sum of the columns of Hu divided by (n - 1) gives the average distance 
of all points from each other minus the average distance from point k to all 
other points. Small values of h.1: indicate that k is n~ar one end of the con-
tinuum, and large values indicate that k is near the center. Inspection of 
Hil will ordinarily suffice to determine on which side of the continuum the 
particular stimulus is located. Given matrix Hil: with rows and columns in 
correct order, a shortcut method of obtaining 

L (it.,. + hu - kn) = L 
A>i>' 

is to 
1. Obtain the diagonal sums 8. of elements above the principal diagonal: 

.. -. 
B. = L hUH.) (c = 1, 2, .: •• , n - 1). (46) 

i-I 

2. Multiply 8. by (n - 2c). The sum is equal to L-i.e., if we let t. = 
(n - 2c), 

.-1 

L = L B.t ... (47) .-1 
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For the case where the dimensionality is expected to be greater than one, 
, this general approach does not seem to be very practical. While one could 
think of finding that d .. which will minimize the sums of squares of volumes 
of all possible tetrahedrons for the two-dimensional case, and the correspond­
ing hyper-volumes for the higher-dimensional cases, it would seem that the 
labor involved would again be prohibitive. 

There is another procedure which might serve to give a fair estimate 
of d .. for cases where the expected dimensionality is greater than one. If a 
one-dimensional subspace of four or more points exists in the data, that 
subspace could be used to estimate d... While this procedure does not give 
a "best fit" in the least-squares sense, it does appear to be the most practical 
method suggested thus far. The method has been applied to actual data and 
was found to work quite well. The existence of such a subspace is relatively 
easy to determine. One can compute, for each set of three stimuli, the 
value of d .. which would be required to locate the set of three along a straight 
line. There are n(n - l)(n - 2)/6 of these "estimates," one for each set of 
three different stimuli; and they will be designated as d... The values of 
d .. may be obtained from the follo\\ing equation: 

d = Ii.· + h, .• - h .• .• '1 15 .'" , 
where (48) 

Given the n(n - 1) (n - 2)/6 values of d .. , the following points can be 
noted: 

a. E.'{cept for error, points most nearly in a straight line will give the 
largest value of d ..• 

b. If the four sets of three of any four points give about the same 
''highest'' value of d .. in a consistent manner, we can conclude that the four 
points are in a one-dimensional subspace. This value of d .. would then be 
the estimate of d .. wanted. 

c. If such a set is not found, the largest value of d .. might still be worth 
trying as an estimate of d... Using this value is equivalent to assuming that 
of the set of points at least one group of three is approximately linear. If 
one constructs a B-matrix with one of the points at the origin using this 
estimate and then finds that the third-order principal minors involving these 
three points vanish (approximately) this value of d.. is probably a good 
estimate. The entire B-matrix need not, of course, be constructed. One 
would need to evaluate only (n - 3) third-order principal minors involving 
only 3 (n - 2) distinct elements instead of the (n - l)(n - 2)/2 elements 
in the complete matrix. 

Summary 

A set of methods for multidimensional scaling based on Riehardson's 
original model (3) have been developed, including a least-squares solution for 
obtaining comparative distances, and routine procedures for estimating the 
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additive constant necessary to convert comparative distances to absolute 
distances and for obtaining projections of stimuli on axes when fallible 
absolute distances are given. An outline of the procedures developed IS 

given below. 

A Routine Procedure for M ultidirnensional Scaling 

A. To obtain comparative distances by the complete method of triads. 

1. Construct the n matrices "'P'i from the raw data. 
2. Construct the corresponding matrices ",Xii' 

3. Obtain a row vector of averages of columns for each of the n matrices 
"X;; • 

4. Construct matrix "X. i composed of these row vectors (k designates 
row, j designates columns). 

5. Obtain a row vector of averages of columns of ,.X.i • 

1 
.X.t = n ~ ",x.1 • 

6, Add the gth element of .X.I to each element in the gth row of ",X. f • 

Call this new Matrix Gil' Matrix G"I thus contains the elements 
(,x. I + .x .• ). 

7. Average the symmetric elements of Gkj to obtain th~ symmetric 
matrix HII;. Matrix HII; is composed of the elements hi" = d .. -
di ", , the comparative distances (with a negative sign) between stimuli. 

ii.,. = hA• = !(g.A + gAo). 

B. To obtain an estimate of d ... 

1. If the hypothesis of unidimensionality of stimuli seems reasonable: 

a. Arrange rows and columns of Hi" in order of magnitude of the 
stimuli by 
(1) Noting magnitudes of sums of columns of HI", and 
(2) Examining elements of Hil;. 

b. Obtain diagonal sums of Hie above principal diagonal. 

c. Multiply each Se by (n - 2.) and sum the products to obtain L. 
,,-I 

L = :E S. (n - 2c) • 
• -1 
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d. Divide L by n (n - 1) (n - 2)/6 to obtain d ... 

L 
d = ( / . .. n(n - 1) n - 2) 6 

2. If it is reasonable to assume dimensionality greater than one with at 
least one set of four stimuli in a one-dimensional subspace: 
a. Obtain the n(n - 1) (n - 2)/6 values of d .. assuming in turn that 

each set of three stimuli lie in a line. 

d .. = hif + hu - hil: , 
hil: < hif , h;1: • 

b. The four sets of three of any four points lying in a line will give the 
same "highest" value of d .. (except for error) in a consistent manner. 
If such a set is found, this value of d .. will be a good estimate of d ..• 

c. If no such set is found, use the highest value of i1.. obtained as an 
estimate of d... Compute the necessary elements of a matrix B, 
with one of the three points as the origin. Evaluate the (n - 3) 
third-order principal minors of B i • If these minors all vanish 
(approximately) this d .• is probably a good estimate. 

C. To obtain projections of stimuli on axes. 

1. Construct D;I: • 

djl: = d .. - hjlr • 

2. Construct Bi with origin at any stimulus i. 

b;1: = !(~; + ~I: - cf;1:)' 

3. Obtain from B, averages of 
a. Columns, 

h. Rows, 

c. And all elements, 

b .. = n
1
, L: L: b; •• 

• j 

4. Construct matrix B* with origin at the centroid of stimuli. 

br. = b;1r - b.i - bi. + b ••• 
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5. Factor B*, obtaining A1 .. , the matrix of projections of stimuli jon 
arbitrary axes m. 

6. Rotate and translate matrix AI", to a meaningful set of dimensions if 
criteria for such are available. 
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