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Implicit to the method or multidimensional scaling is the notion 
that any set of stimuli which make up a single domain may be described' 
with little or no loss of infonnation upon some limited subset of under­
lying dimensions. While it is axiomatic that N stimuli may be described 
with no infonnation loss by N - I dimensions {I J MDS attempts 
to " ... determine the minimum dimensionalitY of the set. , ." (Tor­
gerson, 1958, p, 248), 

Through the orthogonal decomposition of the matrix (A) the num­
ber (m) of eigenvalues (rools) is determined. For each III roots there 
exists exactly m linearly independent eigenvectors, onc associated 
with each eigenvalue (Noble, 1969, p. 281). The null space results 
because all the rows or columns (2J are not linearly independent. 
One of the assumptions of MDS is that the stimuli share attrihutes 
in varying magnitudes and arc therefore linear combinations of each 
other. By factor analyzing the scalar products matrix the proportion 
or the variance of each 111 dimensions and the scale values of each stim­
uli on these dimensions is determined. Perhaps due to measurement 
error or the variety of attributes which subjects may usc to dirferentiate 
the stimuli, some degree or variance is usually explained by all N _ I 
dimensions. This makes the actual number of underlying dimensions 
unclear. Thus, what is mathematically straightforward becomes a 
matter of confusion for psychometricians. How then does one deter­
mine the minimum number of dimensions upon which the domain 
of stimuli may be differentiated? 

Shepard (1974) identifies determining the proper number of dim en­
sions as one of the major problems facing the future of MOS. The 
~uthors concur in this opinion. They will review slatic methods cur-
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,'<!ntly used to the number of dimensions: the scree test, the measure of 
stress, and the interpretation of the di~ens.ions. They s.~gges,~ th.at all 
three are inadequate, and that detenmnatlon .of the true .dlmen­
sionality of an MDS space requires information from outSide the 
;Iomain of concepts themselves, As a theoretical question, tI.le rank of 
an MDS space cannot be detennined solely by methodo~oglca~ pro~e­
dures. Next. they will discuss the detennination of t~e dlme~s\Ona~lty 
of psychological processes, through the use of time-senes metnc scahng. 
Finally, the utility of this conceptualization will be demonstrated. 

1. Static measures 

TIle .vcree test .' 
One method of determining the proper dimensionahty of a space IS 

the scree test (Cattell, 1966; Tatsuoka, 1971). It ope~ates ~s follows. 
Plot the absolute values of the eigenroots for each dimension of ~he 
space. Then connect these values. The proper ~umber of. underlYlOg 
dimensions is detennined where there is a dra~hc c~ange Ill. the .slope 
of the curve. This quantity is the number of dimensions ~llIch he off 
the line connecting the smallest root to this point .and IIlclude~ the 
largest root on the scree line. The remaining dimenSIOns theoret.lca\ly 
represent measurement error. In Fig. I. there would be a three-(hmen-

sional solution. . .1,'.' . The major fault with the scree test is its arbitra~ nature. While 
it tells one which dimensions account for more vanance than th.e 
others, it does not do this in an exact way. Only the fact that ~here IS 
a clear break in the size of the eigenvalue is used to dete~mc the 
correct number of dimensions. While each d~mension in th~S subset I 
is larger than each of the remaining dimensl~ns, the s.olulion may 
exclude as mllch variance as the retained dimenSions take mto a~co~~t. 
The reason is that while the chosen dimensions are larger IIldlVld· 
ually, collectively the remaining dimensions may sum to a total that 

Fig. J. The scree lest. 
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approaches or even excecds the slim of the chosen dimensions. Further* 
more, the variance accounted for by a dimen~ion may not indicate 
its relative importance for the theoretical issue under study; it only 
renects the range of variation on the dimension for a set of stimuli. 

SIft'SS 

Perhaps the most popular method for determining dimensionality 
is through Kruskal's (I 964a,h) measure of stress. While the other 
methods lIiscussed in this pHper can be applied to both metric and 
nonmetric scaling. the utility of Kruskal's measure is limited to non­
metric. Stress is an indicator of goodness-of-fit between the obtained 
solution and the measured distances. A perfect solution (stress '" 
0.0%) indicates that there is a monotonic relationship between dissimi­
larities and the reconstructed distances. The criterion for selecting the 
proper number of dimensions is a solution where a minimum dimen­
sionality is obtained in conjunction with a low stress value. This entails' 
the production of a number of spaces of various dimensionality and. 
then selecting the solution which is low in its number of dimensions 
and low in stress. 

Generalty, the stress measure decreases as the dimensionality 
increases. This suggests that one should apply the scree test to this 
measure. Iclcally, the function relating stress to number of dimensions 
should drop abruptly to the proper number of dimensions and then 
decline only very slightly thereafter. 

Kruskal (1964a) suggests the following evaluation of quality of 
solution, based on the stress measure. 

Stress (%) 

20 
10 
5 
2.5 
0.0 

Goodness-of*fit 

poor 
fflir 
good 
excellent 
perfect 

This method has been severely criticized by a number of researchers 
(Klahr, 1969; Stenson and Knoll. 1969; Young, 1970; Isaac and Poor, 
1974; Cohen and Jones, 1974; Green, 1975). Young (1975) found 
that stress increased as thc number of stimuli increased. He writes 
(l970,p.471): 

If one relies heavily on the stress index the unfortunate situation exists that 
u he diligently gathers more and more data about an increasingly targer numher 
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of stimuli, he will become less and \C51 confident in the nonrnelrically recon­
structed configuration, even though It is morc accurately describing the structure 
underlying the data. Thl. situation suggcsts that one should not rely solely on 
Ihe lITeM of a Icaling lolutlon when thl! a.olutlon it being evaluated. II hal prob· 
ably been suspected by mosl of those using nonmelric scaUng thai Krulkal', 
statement (196411.) Ihat slreM les~ than .OS Is acceptable is 100 stringent. The 
results presented here sUPl'ort this suspicion. The results also suggest that 
one should not lake stress 100 seriously as B measure indicating confidence 
in the results of Ihe analysis. Stress should not reaUy be taken as II confidence 
mCBSure, but as a purely descriptive statistic, with jJ. (metric determinaney) 
being Interpreted as the confidence statistic, 

Based upon the above research, Green (1975, p,75) makes the 
following comments concerning the use of stress to determine dimen­
sionality: 

I. The ratio of number of degrees of freedom for stimuli, n(n - 1)/2, to 
number of degrees of freedom for .olution, 4(n - I) -1(, - 1)/2 (where /I is 
the number of stimuli and' is the number of dime~sions) should be greater 
than 2.5, If at aU possible. That is, with moderate degrees of enor a ratio of 2,S 
will generally overdetermine the solution weU enough to provide good recovery. 

2. Kru.kal'. stress measure overestimates goodneu of recovery when too 
lew points are used, when there is ,ubstantial enor In the dQta, and when recov· 
ered dimensionality overestimates true dimensionality. 

3. It Is generally beller to overestimate rather than underestimate the number 
of dimension. i, OM i. interested primarily In configuration recovery with tho 
least distortion. 

4. Stress curves of the type propo.ed by Spence and O(tlivle (Stress VII. dlmen· 
sionallty for selected numbers of points) can provld.e a supplementary (and 
mechanical) measure for helping the re5earcher estimate dimensionality. " . 

S. Kru,kal'l stress measure alone ill notlufficicnt for determining the number 
of dimensions to be retained. At the very least, tl).e"dimensions that arc retained 
Ihould be Interpretable substantively and rclillbli:> BcrolS subgroup or Interacci' 
510n scBlings. . 

Illterpretation 
A third method which is used to detennine the dimensionality of 

a multidimensional space is through the interpretation of the loadings 
on the dimensions. Can a meaningful substantive interpretation of the 
way the stimuli are arranged in a space of a given dimensionality 
be found? Shepard (1972) suggests that one should take the following 
factors into account when attempting to interpret a spatial representa;' 
tion. One should look for rotated or oblique axes that may be readily 
interpretable. Are there a set of clusters that can be interpreted? 
What other kinds of orderly pallerns (such as the arrangement of the 
stimuli to form a circle, in the case of color names or chips) are there 
in the space? .. 
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Typically, the procedure is used in conjunction with the other meth­
ods. One attempts to strike the balance between an interpretable 
configuration and a good fit. It is considered undesirable to analyze 
Ihe data in so many dimensions that they cannot be interpreted, even 
though the fit may be good. However, the important aspects of the 
configuration are not always in the first few dimensions. In some 
cases the higher dimensions nlay help clarify the interpretation. Thus, 
the rule of thumb as stated by Wish (1972, p. 2) is, "If an attribute or 
property can be fit well in II dimensions, but not in 11 - I dimensions, 
then there is reason to keep the last dimension." 

The orientation of the resultant dimensions is entirely arbitrary. 
As a result, additional techniques may be used to help with the inter­
pretation of the spatial manifold. Rotation of the points to simple 
slructure may facilitate the analysis of the configUration. This has 
become standard procedure in certain MDS programs (cL KYST). 
Cluster analyses, such as Johnson's (1967) hierarchical cluster analysis, 
may also facilitatc interpretation. Additionally, linear regression may 
be used to identify attributes in the space (Barnett, 1976; Jones and 
Young, 1972; Gillham and Woelfel, 1977). This technique is particu­
larly useful in spaces of large dimensionality. 

While the interpretation of the dimensions may facilitate the deter­
mination of the proper dimensionality of the space, it is not without 
draWbacks. Linn's (1968, p. 38) comments concerning the same pro):>­
lem in factor analysis are applicable here. 

Although meaningfulness or scientific interpretability arc importDnt considera­
tions In the development of scientific theory, it is not 3 very sound hasis for the 
inclusion of a construct or fDetor in the scientific domain. It appears that the 
post hoc meaningfulness given to a factor is limited only by the analyst's ability 
to rationali1.e the obtained factor loadings. The second, and more respectahlc 
criterion of replicability, while basicn!!y sound, is limited by the lack of a good 
method of comparing factors. The usual "eye ball" method of comparing factors 
~ subject to the same criticism as is the meaningfullness criterion. 

The use of graphic representation may aid in interpreting dimen-
1ionality. This may also lead to erroneous conclusions. Only three 
dimensions at a time can be visualized. The immediate result is that 
solutions which require more than three dimensions cannot be exam­
ined in this manner. Thus, there is a tendency to limit solutions to two 
or three dimensions so that they can be visualized and readily inter­
preted. However, often solutions with greater than three dimensions 
are common, especially when large numbers of stimuli are scaled. 
Oearly, the use of visual aids in interpreting the spatial manifold and 
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d' 'onality has severe limitations. 
its use in determining the pro~:.r . lmen:~abel1ing dimensions is that the 

Perhap~ the most se,vere c~ lClsm 0 irit of the method. The use of 
practice may be runnmg a~amst. the ~ taken into account simulta­
MDS requires that the dimensions e .. f the space 
neously. By attaching an at~ribute la~~l t~i:~~~~:e;~~~~ ~e explained 

~yi\~~fl~~~rit:~:t~~~: ~:~~n~~tO;e t~e ::~e'd~~~~io~~~~r~~~r~o~:; 
isomorphiC relation between a~tnbute~hich can fit in and serve in 
be several linearly related attnbutes. h lor or cu1-

Al attnbutes suc as co 
interpretat:n ~~l~i~f;~~·sion:~: ~~~mensjon refers only to one of a 
ture may e which is the result of mathe-
set of orthonormal reference vectors, h 1 of , 

. t ttribute. Thus, t e remova 
matieal operatIOns, an~ not 0 an .a t be labelled with an attri-
dimension from a solutIOn because It ca~~o. . . 
bute should not be a criterion for detenUlnmg dlmenslOnahty. 

Me/ric determi/lac!' . .. the "true" dimensionality ofa 
TIle ultimate cntenon for de~enmnm:Tt f the dimensions of the 

,patial manifold as measllTed IS the ~ I I. yo. U d -d 1 ondi. 
.. 1 d· . lianty matrix n er I ea c 

space to reconstruct th~ ongI~a 1~lm id be equivaient to the original 
tions, a space of ~l dll~e~slO~s s IOU be shown 
n x 11 distance matnx. TIus Idemty can 

A 'AT :: A 
(I) 

"Xm .. x .. 
h t matrices may be considered the 

err!~ew~:~~re::;;~ai~:n~~~I; o~ a ~~~icular dimensionality enters into 

the analysis. Thus eqn, (2) becomes,-

A·AT=A+E 
(21 

"Xm "x" 
d ined by the variance unaccounted 

fo;~; ~~:r~e~:u~~~ ::ir~e de~~er:nacy (JJ) (Shepard, 1966; Young, 

(I ~1·index. of metric detenninacy (s.t) is defined as the squared corre­

lation between the true distances 

(A ) 

"'" 
and the reconstructed distances 

(A _AT). 

"'" 

It follows that, 

e = I -,u 
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f3) 

where e is the variance unaccounted for by a space of a particular 
dimensionality. This value equals zero when all n -1 dimensions are 
uscd, and it increases as the dimensionality decreases. The metric 
determinacy statistic, however, assumes Ihat Ihe measured distances 
(A) arc true. reliable measures. If a random component is included 
in (A). then a value of 0 for Ii only indicates that the MDS configura­
tion perfectly reproduces the (partially) erroneous raw scores, error and 
all. TIlc usc of metric determinacy as a sole criterion, therefore, 
would always result in a complete decomposition of the distance 
matrix, whether such was warranted or not. 

till illu.'1tratiOIl o/static tests for dimensioll: 
In February 1975, 15 subjects bilingual in French and English 

.:ompleted 45 direct pair comparisons between 10 different lexical 
it~ms dealing with the mas.~ media. The concept"s language, English 
or French, was randomly assigned. The assumption under investigation 
was that a dimension would be present in the space which would 
differentiate the English words from the French. The data were aggre­
gat~u to prO(!uce the lower triangle of the mean matrix presented in 
Table! I. This matrix was then entered into a metric scaling program 
(Galileo 2.4, Serota, 1974) and a non-metric program (KYST). The 
5patial coordinates for the entirc N - I dimensions from the Galileo 
program are presented in Table II. 

Next, the authors attempted to determine the proper dimensionality 
of this configuration using th~ methods described above. TIle scree test 
of the eigenroots from the metric data produced a three-dimensional 
lolution as shown below (see Fig. 2). The measure of stress suggested 
that a six dimensional solution provided the best fit. This was arrived 
u through a scree test of the stress values. This is shown in Fig. 3. 
According to Kmskal (1964a). this solution (stres~ = .039) prOvides a 
good to excellent fit. Green (]97 5) suggestcd Ihat for a space generated 
from 10 concepts that only two dimensions should be retained if the 
,olution is to exceed 2.5 for ratio of the number o·f degrees of freedom 
for the stimuli, to the number of dcgrees of freedom for the solution 
141_ 

At this point, an attempt was made to interpret the spatial manifold. 
The first dimension in both the metric and non-metric solution sepa­
rated the electronic media from the print media. TIle second dimension 
could be described as an entertainment-infomlation dimension. Beyond 



TABLE I 
Mean dist3nce n13uix ror b~ingui!ls in 3 mixed langu.gc condition 

\. Books .0 
2. Mapzines 60.80 .0 
3. ~1 Joumcault 19.93 40.20 .0 

4. l.lMusiquc 96.13 91.46 . 94.00 .0 

S. R:ldlo IOS.86 88-11 61.50 25.71 .0 

6. La TOl&isioD 108.43 92.36 68.64 54.57 48.27 

7. Sports 161.S7 143.00 89.93 111.29 12.93 

8. l.eCinema 95.79 118.71 \;!·.i~ 49.42 72.64 
9. L 'Informalion 65.93 51.36 98.00 30.50 

10. Enlerl>inment 31.43 48.00 53.62 18.14 36.00 

N= IS 

TABLE 11 

Spali:oi coo,din~I.S for b~jngu~ls in 3 mixed langUage comlilion 

I. Books -73.85 17.12 19.40 IS.00 9.66 
2. M3f,3zines -60.12 _24.18 -23.52 -1.S6 _11.74 
3. Dc! Jeumaux -16.97 -4\.68 -2.8\ 2.70 _3.24 
4. La Musiquc 659 50.41 -31.52 -7.6\ -1.28 
S. Radio 20.72 2.47 -23.15 -22.10 20.35 
6. L::r. Tel"vinon 30.48 .06 9.02 -15.16 _18.01 
7. Sporl. 80.19 _29.87 -58 23.12 2.81 
8. Lc Cinema 19.42 42.55 33.62 _4.92 _3.73 
9. L'lnform~tion -8.56 _30.24 24.76 -23.38 6.48 

10. Entertainment 2.11 13.29 -5.22 33.92 1.67 

Eigen>Qluel (roors) of eig~n>~cror malrix 
11.624.34 8962.95 4320.12 3266.46 1066.40 

PeFunrageofdiIlallceaccounred for by im!i"k!ual "ector 
49.78 25.29 12.19 9.22 3.01 

CumniDth'e puccnragcsofrtal dislanccaccounred for 
49.78 75.07 87.26 96.47 99.48 

CumlliDli>e perCeIIlageJ of lola I (real and ,'maginaryj dilranu acrounrni for 
66.73 100.63 116.97 129.33 133.36 

Trace 26.438.63 

~i..~::u 

.0 
54.43 .0 
42.07 99.50 
26.00 83.43 
40.64 33.57 

-9.66 -.C6 
-3.25 -.OS 
10.46 -.01 
2.43 .01 
-.84 .02 

-4.59 .02 
-1.41 .06 

4.19 .02 
_2.63 -.bl 
-2.38 .00 

181.64 .Ql 

52 .00 

100.00 100.00 

134.05 134.05 

~'.".-!~-;;:., ;"; 

10 

.0 
60.00 .0 
19.07 61.36 .0 

-12.33 2.19 
14.40 -3.08 
-6.59 -6.32 
-<51 27.95 

.. 9 _23.54 
-14.22 -16.53 

.60 13.76 
14.15 -9.62 

,.'" 25.46 
4.01 -10.28 

-859.44 2698.65 

-2.43 -7.61 

97.58 89.96 

130.80 120.60 

."". 

-25.10 
-19.33 

8.99 
353 

-4.43 
4.13 

-31.50 
-13.07 

29.39 
48.40 

-5445.09 

-15.36 

74.59 

100.00 

~ 
~ 
~ 

~ 
~ 
W 
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Fig. 2. Scree test of cigcnroots. 

these two vectors, the other dimension could not be readily interpreted. 
It is interesting to note that no language dimension could be readily 
identified. Clusters were next examined and the only oncs present in 
the space were the ones discussed above dealitlg with the mass medin. 
The graphic representation of the first two" dimensions is presented in 
Fig. 4. 

Since the language variable was not manifest in the configuration, 

Fig. 3. Scree te~t of stress values. 
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0 .' ~ ,. 

'--___ -L ___ _ 

Fig. 4. Bilingual mi!l;ctl·language space (English concepts arc circled). N= 15. 
I, Books; 2, Magazines; 3, Des jOl.lrnaux; 4, La musique; 5, Radio; 6, La t;\l6vision; 
7, Sports; 8, Lc cinema, 9, L'inrormation; J 0, Entertainment. 

it was Jecided to regress a vector of 7.eros (English) and ones (French) 
through the spllce. This operation was performed on all nine dimensions 
which resulted from the metric solution [5J. The correlation coef­
ficients of the language vector with each dimension are presented in 
Table ITT. Because of the problem in regre~ion analysis thllt as the 
number of columns approaches the number of rows, the multiple 
correlation approaches 1.0, only those dimensions with an " > .15 

TAIILEIIl 

Conoll.llonl of indiVidual dlmeMlo", from bUUngual mlxod language .pace wllh language 
"':10' 

Oimentlon " 
.147 .027 
.141 .Q20 
.318 .101 

-.535 .287 
-.441 .194 , .460 .212 

" • -.ISS .024 , .25S .024 
10 .274 .075 

• Dlmens!on 7 wa, 1101 included In Ihe an:tlysl, beCllusc it was" veclor of zelO •. 

". ' 



'were retained in the regression. These were dimensions 4, 5 and 6. 
Together they produced an Rl", .69, significant at the .056 level. 
Clearly, the language vector was present in the space, although small 
compared to other attributes on which the words were arrayed. It 
is of interest to note that if only the dimensions suggested by the 
standard procedures were retained as the solution, the phenomenon 
under investigation might have been removed from the data. 

But the question of concern is, which solution, 2, 3, 6 or all 9 dimen· 
sions is the best? While the two dimensional solution was readily 
interpretable, it accounted for only 68.2% of the variance, leaving an 
error term of .318 and a stress level of .175 (a poor to fair fit). The 
scree test suggested three dimensions. However, the third dimension 
could not be interpreted and over 20% of the variance was removed 
from the analysis (p. '" .788, E'" .212). The inclusion of this dimension 
reduced stress to only .126; still a poor to fair fit. Six dimensions 
produced a good to excellent stress level (.039) and accounted for 90% 
of the variance. Additionally, the language vector could be explained 
quite well. All the dimensions with an " of .15 or greater were included 
in the six dimensions. Clearly, the six dimensional solution is the best 
discussed so far, in that it retains an attribute knowil to span the space, 
even though that attribute does not correspond to any dimension. 

2. Dynamic measures 

When time-ordered measurements are taken, additional mcasures of 
dimensionality arc made available. Ultimately;pe reasoning for select· 
ing a subsct of the dimensions from the ,empirically identified set of 
dimensions, even though that subset iess·thnn-perfectly reproduces 
the raw data, is that the raw data themselves nre assumed to be in 
error. Usually this error component is assumed to be random measure· 
ment error or unreliability~ it is usually assumed also that it is this 
random component which lies along the smallest eigenvectors. At least 
two procedures suggest themselves as a test of this hypothesis. Fir'.!t, 
if the latter dimensions are unreliable, their over·time auto correlations 
should be near zero. Dancs and Woelfel (1975) report correlations of 
the 16 dimensions recovered from a 17 X 17 matrix of dissimilarities 
across a five·week interval (see Table IV). These data show the last 
five eigenvectors are randomly related across time, but note that the 
J Ith eigenvector is substantially more stable than the 7th through 10th 
eigenvectors. 

A second, more rigorous method follows from an extension of 
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TA[lLE IV 

S"bUlty eocfflcJenl. of U'o coo,dlnl(e. oblnlnod nt two point! In lime'. Sou",e: Dane5 and 
Woelfel (l97S) 

Coo,dlnate Ovo,.llIn. co""hllon (COIlOI.llon)' 

L .., .9< 
2. .S! .65 
l. .86 .N .. .'" .49 
5. ." ." 6. ." AO 
l. .J8 .J< 
B. .ll ." 9. .37 .J< ". ." ." II. .56 .J< 

l2. ." .02 ". -.0]4 .00 

". .Oll .00 
]5. -.29 .08 ". -.074 .00 

• TIlt C1)oldinnto. arc 'anI: or~.r.d in lorn,. of thoir .hmlutc eiKen,oot value. 

the regression method suggested earlier. Given that an attribute is 
regrc~~ed o~to the set, of facto,: at t~o or more points in time, stability 
and ~eanmgful~ess of a dimenSion across time requires that the 
regressIOn coefficLCnt of the factor'.! vis a vis the attribute vector remain 
the same, since thosc cocfficients rcpresent the projection of the attri· 
bute vector on the factors_ Thus, Gillham lllld Woelfel (1977) present 
the regression coefficients for two attribute vectors across the factors 

TABLE V 

Un't.~dO!d!l~~ .cg1euion c~emcienl' f.om ","lth>lo rogreSl!on of '1uaLitarlye p(ldlion upon 
~re.h.d roswon. Source: G~lhn", ~nd Woelfel (197S) 

Time one Time two Tim.thr~ 

PoU11~judRl11entJ -.16 _.20 -.IS 
_.17 _.07 -,02 

.03 -.11 _.03 
R- ." .9J ." 

QIllmlrAtivone~ Judgments .U ." .15 
.22 .16 .11 

-.21 _.28 -.06 
R- ., ." .75 

p < .01, one·tailed. 
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of a metric MDS space at three points in time in Table V. These data 
show the three factors in the illustration remaining quite stable over 

the intervals. "d ... 
Neither of these two procedures can feall}' be called ~namlc 

in an important sense, since they really represent compansons of 
static configurations over time. When genuinely processual data are at 
h~nd. however, more powerful methods are available. To mus~rate 
these procedures we define three points, A. B, and C, as re~pect.LvcIY 
the endpoints and axis of two equal-length clock hands In FIg. S. 
Assuming a rotation scheme that haMs C on the origin and rotates to 
ana1ytic simple structure at each time interval (Woelfel et at .. 1975), the 
dimensionality of the set of points (A. B. C) will be one on the hour and 
(roughly) 38 minutes past the hour, and two dim~nsiona~ at a~1 other 
times. Even assuming perfect measures of the mterpomt. dIstances 
among A, Band C continuously across,)ime, it is very ~nhkelY that 
the most diligent psychometrician,·--using all the te.ehmques na~ed 
heretofore, would ever uncover the simple dynamIC (an~ cY~hC~) 
pattern in this configuration which is given to an apprOXImation. In 

Fig. 6. Two procedures do suggest themselves, however, to detectIOn 

E,genroot ---'. ---', 

" 
Fig. 6. Eigenvalue! of the let of Interpoint distanCes in Fig. 5 by time (min). 
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of this cyclical pattern, both based on auto regressive models. 
First, we might calculate the correlation betwecn the valuc of the 

It/, eigenroot with itself at each earlier point in time, giving thc series 

of autocorrelations 

r~I' (I-I)' r).l· ~(r-l)' ... r),r. ).(.-11) 
(4) 

for n periods of time. In the present example, for both AI and Al, 
')./.).(1_59)= \.0, indicating a precise one-hour cyclc. (Duc to the 
complications of both motions, other autocorrclations of ncar 1.0 
scores will be found as wcll ovcr longer time intervals.) 

A second, more comprehensive procedure would require regressing 
the value of each eigenroot at t on its entire history of values in the 
recursive multiple regression equation (sec Glass el al .• 1976; Box 

and Jenkins. 1970). 

A, '" 0: 1\1- I) + a,A{._l) ... a (l_n)A{I_n_l) + € (5) 

Not only docs eqn. (5) present the information available from the set 
of zero-order autoregressions in (4), but it makes possible the empirical 
determination of external events on the process. If we assume that a 
stimulus is introduced into the sequence at a point in time tp we 
may create the dummy variable X, where X= -I for all points prior 
to tp and +1 for all points afterward. Any number of such variables 

may he fit into eqn. (5) to yield 

A, = 0: IA(I_ I) + CllA(I-ll + .. + CI(I_n_1)A(._II) + {J/X, + e (6) 

In eqn. (6), thc a, give the effects of each prior value of A on its present 
value, and :E/ a, '" the total effect of the IIlstory of A in its value at t. 
The p, give the effects of the it" outside event on the process, and :E" (11 
gives the total effect of all outside events measured. 

If we expect that variations in the rank of the space are affected by 
crmtiu/lollsl)' lIariahle outside variables 2" we may incorporate their 

effects into the model similarly as 

A/ = a I A(I_I) + Cl2A{21_1) + ... + (I (r_n)A(r_II_ I) + (J,XI + "IIZ{t) 

+ I',Z(I_ I) + ... etc. 

(7) 

where the "I, represent the effects of variable Z at each point in time, 
and 1:, "II represent the total effect of the history of Z on A. 

While cqn. (7) can be further generalized to include effects of inter­
actions among outside events, variables and their histories, these gener­
alizations are fairly obvious in the context of the regression equation 
and will not be dealt with here. Of greater salienc~, however, is the 01>-
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servation that the time-series of measures represented in eqns. (4) 
through (7) anticipate occasional zero values for some of the A/ at some 
of the points in the series. This means that even a null eigenvector will 
frequently be retained in a time series. Put another way. for time-series 
analyses of MDS processes. the dimensionality of the proc(!SS should 
not be assumed to be the small set of eigenvectors which persist across 
all time points, nor even a relatively stable subset, but rather the largest 
dimensionality found at any point. Thus for any two points in time 
i and j, if r (the rank of the space) at I, is 'I, and at 1/:=', = 'I + k, 
then k zero eigenvectors need to be added to the space at 1/ before it 
is included in the time-series equations. 

Summary 

In general, most of the techniques now in common use for the 
determination of the dimensionality of MDS spaces tend to under­
estimate the number of dimensions needed to represent the underlying 
configuration accurately. This tendency is exaggerated when time­
sequenced MDS observations are under study. Fortunately, eco­
nometric time-scries (autocorrelation) procedures may prove helpful 
in resolving this problem [61. 

Notes 

I Any two points may be connected by a IInc, yielding II single dimension differ· 
entiating the objects. Three points may be connected by a plane. No information 
as to their differentilltlon would be lost by Indicating the objects' selile values 
on the two dimensions. The same holds for four points In a pyumid and" pOint, 
in II hyperspBse of II _ I dimensions. It should be noted that if any three or more 
points lie II10ng a line, fewer dimensions would be needed to precisely describe 
the SYstem. Note of course that In a diSSImilarity matrix the major diagonal con· 
tains all zero!, which by definition results in B space of rank n - I. 

2 This IIssumes thllt the data mlltrix is not symmetricru. If it meets this criterion 
then the columns and the rows arc equal and only one need be considered. 

J The reason why the absolute values of the eig~nr06ta arc used is because metric 
scrumg often results in a non·positive semidefinite matrix. When this matri~ 
is orthogonally decomposed negative roois result. As a result the absolute value 
rather than signed.value should be used in the scree test. 

4 For r'" 2, the ratio of the degrees of freedom for the stimuli to the degrees of 
freedom for the ~olution ill 2.65. For r" 3, It equals 1.88. For r" 4, l.SO nnd 
r" 9. 1.0. 

S The same anal.fsis was performed with the results from the KYST program. 
R".73 and R = .54. This multiple was produced from dimensions 4, 5, and 6 
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whose r> .15. the same criterion as in the metric case. Dimension 4, r= .25; 5, 
r= .50; 6, r'" .41. It is interesting that the metric solution provides much better 
recovery of the language attribute tllnn does the non·metric . 

6 A "'e~rk ~lDS scaling program (Galileo 4.0) which is sP~cifical\y designed to 
deal wLth ilme·seqlLCnccd MDS spaces .is available from the authors. 

References 

Barnell, G.A. (! 976). "The determinants of semantic organization of bilinguals" 
p.aper presented at the Bnnunl meeting of Intcrnational Communication Associ~. 
tLon, Portland, Orcgon, April. 

Oox: G.lO.P. an~ Jenkins. G.M. (\970). 'Tim(' Su/rs Alla/Y1is: For('CQs/ing alld 
(nn/ro/. San francisco: Holden-Day. 

tJlle~. R.B. (cd.) ([966). Handbook of ,ltult/"ariare f:xpcrimc'Ha( R('scarc/,. 
Ch,cago: Rand McNally. 

Cohen, .1I.S. ~nd Jones, L.E. (1974). "The Effects of random error lind 5ub.~ampling 
of ~Lm~.nsLons on recovery of configurations by non metric multidimensional 
scahng. Ps),dwlIlerrika. 39: 69-90. 

Dl~~~. J .. and Woelfel, J. (I.97~). "An a1tern~tive to the 'Traditional' scaling pnro. 
. Lgm HI mass cornmumcatlon rcsearch: multid!/I1en~ional reduction of ratio 
)udgm.cn.ts of se.palation," Paper presented before international Communication 
AS\OCLatlon. ChiCago, Illinois, April. 

Gillham, 1 .. and Woelfel. J. (1977). "The Gulilco system of mcasurement: prelimi­
nary cVld.encc for stability and equivalence to traditional measures," FIllman 
CO//lIIIl/mearlon Research, 3: 222-234. 

Gla5.l .. G.V." Wi~son. V.L. and Gottman. 1.M. (]97S). Des/gil alld Anal)'sis of Time· 
G ::C/,rs 1:.'(Pcrl/ll<:n.~s. Boul<Jer: Colorado: Colorado Associated U. Press. 

Ie n, P. (1975). On the robustncs' of multidimensional scaling tcchniques'" 
Jnutnal 0/ Markering Res('a,eh 12: 73-8 J. ' 

h.:La~, P.1? a.nd Poor" D.D.S. (1974). "On the determination of appropriate dimen. 
~onahty In data with error." P1ychomerrika 39: 91-109. 

JOh2n:~:'24~·.C, (1967). "Hierarehical clustering schemes:' PsychOmefrlka 32: 

Jone.s. L .. E. ~~d You~g. F.W. (1972). "Structure of a social environment: longitu. 
dlnal HI~lVLdual dLfferences 5caling for nn intact group," JOlltnal of PerJOllalir 
and SOCial Psychology 24: 100-121. )' 

Klahr, D.A. (]969). "A Monte Carlo investigation of the stDllstical signifleance 
• of Kruskal's nonmetric scaling procedure," Ps),chometrika 34: 319-.330. 
Kruskal. J. 51964a). "Multidimensional scaling by optimizing goodncss to fit to a 

nonmetnc hypothesis." Psyelromctrika 29: 1-27 
KMkal, J. (I~64b). "Nonmetric multidimensional Sealing: a numerical method" 

F'sychometnka 29: 2&-42. ' 
linn. R.L. (l968). "A Monte Carlo approach to the nUmbcr of fllctors problem" 

F's)'cilol/lcfTika 33: 37-72. ' 
Nobel. B. (1969). Appll('d !.Inca, Algebra. Englewood Cliffs N J . Prentice II II 
S~rota, ~.O. (1974)'."M~.tric multidimensional scaling and ~o~l~;unicatio;; t;~C~ry 

a.nd lmpl:mentatlon. unpublished M.A. thesis, Michigan State University 
E3S1 Lansmg. - ' 

- , 


