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Implicit to the method of multidimensional scaling is the notion
that any set of stimuli which make up a single domain may be described
with little or no loss of information upon some limited subset of under-
lying dimenstons. While it is axiomatic that & stimuli may be described
with no information loss by N — | dimensions [1] MDS attempts
to *... determine the minimum dimensionality of the set ., " (Tor-
gerson, 1958, p. 248).

Through the orthogonal decomposition of the matrix (A) the num-
bee (s} of eigenvalues (roots) is determined. For each 1 roots there
exists exactly m lincarly independent eigenvectors, one associated
with each cigenvalue (Noble, 1969, p. 281). The null space results
because all the rows or columns [2] are not lincarly independent.
One of the assumptions of MDS is that the stimuli share attributes
in varying magnitudes and are thercfore linear combinations of cach
other, By factor analyzing the scalar products matrix the proportjon
of the variance of each 7 dimensions and the scale values of each stini-
uli on these dimensions is determined. Perhaps due to measurement
error or the variety of attributes which subjccts may use {o differentiate
the stimuli, some degree of variance is usually explained by al v - 1
dimensions. This makes the actual aumber of underlying dimensions
unclear. Thus, what is mathematically straightforward becomes a
matter of confusion for psychometricians. How then does one deter-
mine the minimum number of dimensions upon which the domain
of stimuli may be differentiated?

Shepard (1974) identifies determining the proper number of dimen-
sions as one of the major problems facing the future of MDS. The
authors concur in this opinion. They will review static methods cur-
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fently used to the number of dimensions: the scree test, the measure of
stress, and the interptetation of the dimensions. They suggest that all
tlree are inadequate, and that determination of the “true” dimen-
sionality of an MD$ space requires information from outside the
domain of concepts themselves. As a theoretical guestion, the rank of
an MDS space cannot be determined solely by methodological proce-
dures. Next, they will discuss the determination of the dimensionality
of psychological processes, through the uge of time-series metric sealing.
Finally, the utility of this conceptualization will be demonsirated.

1. Static measures

The scree test

One methed of determining the proper dimensionality of a space is
the scree test {Cattell, 1966; Tatsuoka, 1971). It operates as follows.
Plot the absolute values of the eigenroots for each dimension of the
space. Then connect these values. The proper number of underlying
dimensions is determined where there is a drastic change in the slope
of the curve. This quantity is the number of dimensions which lie off
the line connecling the smallest root to this point and includes the
largest root on the scree line. The remaining dimensions theoretically
represent measurement error. In Fig. 1, there would be a three-dimen-
sional solution,

The major fault with the scree test is its arbitrary nature. While
it tells one which dimensions account for more variance than the
others, it does not do this in an exact way. Only the fact that there is
a clear break in the size of the eigenvalue is used to determine the
correct number of dimensions. While gach dimension in this subset
is larger than each of the remaining dimensions, the solution may
exclude as much variance as the retained dimensions take into account.
The reason is that while the chosen dimensions are larger individ-
ually, collectively the remaining dimensions may sum to a total that
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Fig. 1. The scree test.
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pproaches or even exceeds the sum of the chosen dimensions, Further
more, the variance accounted for by a dimension may not indicate
its relative impottance for the theoretical issue under study; it only
reflects the range of variation on the dimension for a set of stin;uii.

Stress

. Perhaps the most popular method for determining dimensionality
is through Kruskal's (1964ah) measure of stress, While the other
methods discussed in this paper can be applicd to both metric and
nonn.sciric scaling, the utility of Kruskal’s measure is limited to non-
rnctnlc. Stress is an indicator of goodness-of-fit between the obtained
solmlop fmd the measured distances. A perfect solution (stress=
0.(?%5) indicates that there is 8 monotonic relationship between dissimi-
larities and the reconstructed distances. The criterion for selecting the
praper number of dimensions is a solution where a minimum dimen-

sionality is obtained in conjunction with a tow stress value, This entails |

:Ir:e pm]duction of a number of spaces of various dimensionality and:
en selecting the solution which is low in its numb i ions
. 5 er of

and low in stress. of dimensions
) Generally, . the stress measure decreases as the dirmensionality
increases. This suggests that one should apply the scree test to this
measure. Tdeally, the function relating stress to number of dimensions
shotfld drop abruptly to the proper number of dimensions and then
decline only very slightty thereafter.

Kr}mka! (1964a) supgests the following evaluation of quality of
solution, based on the stress measure.

Stress (%) Goodness-of-fit
20
poor
10 fair
2 good
25 excellent
0.0 perfect

This method has been severely criticized by a number of researchers
{Klahr, 1969; Stenson and Knolt, 1969; Young, 1970; Isaac and Poor,
:‘]97‘4;tCohcn and Jones, 1974 Green, 1975). Young (1975) found

&t stress increased as the number of stimuli i i
i jmuli increased. He writes

If onc .n.:iies heavily on the stress index the unfortunate situation exists that
a8 he diligently gathers more and more data about an increasingly larger number

: a:.smm_x_
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of stimuli, he will become less and less confident in the nonmetrically recon-
structed configuration, even though it is more accurately describing the structure
underlying the dota. This situntion suggests that one should nat rely solely on
the stress of n scaling solution when the solution is being evaluated. 11 has prob-
ably been suspected by most of those using nonmetsic scaling that Kruskal's
stalement (1964a) that stress less than .05 is aceeptsble is too stringent, The
results presented here support this suspicion. The results also suggest that
one should not take stress too seripusly as a measure indicating confidence
in the results of the analysis. Stress should not really be taken as a confidence
messure, but s a purely descriptive statistic, with p (metric determinancy)
being Interpreted as the confidence statistic,

Based upon the above research, Green {1975, p, 75) makes the
foilowing comments conceming the use of stress to determine dimen-
stonality:

1. The ratic of number of degrees of freedom for stimuli, nin — 1)/2, to
number of degrees of freedom for solution, 4(r — 1) — (r — 1)/2 (where n is
the number of stimuli and r is the number of dimensions} should be grester
than 2.5, if at a1l possible. That is, with moderate degrees of error a ratio of 2.5
will generally overdetermine the solution well enough to provide good recovery.

2. Kruskal's siress measure overestimates goodness of recovery when too
few points are used, when there is substantial error in the data, and when recov-
ered dlmensionality overestimates true dimenslonallty.

3, It is generally better to ovorestimate rather than underestimate the number
of dimensions s one is intevested peimarily In configuration recovery with the
loast distortion,

4. Stress curves of the type proposed by Spence and Ogilvie (Stress va. dimen-
sionality for selected numbess of points} can provide a supplementary {and
mechanical) measure for helping the researcher estimate dimensionality.

5. Kruskal's stress measure alons 1s not sufficient for determining the number
of dimensions 10 be retained, At the very least, the-dimensions that art retained
ehould be interpretable substantively and re_l'iublé across subgroup or interocca-
sion scalings. )

Interpretation

A third method which is used to determine the dimensionality of
a multidimensional space is through the interpretation of the loadings
on the dimensions, Can a meaningful substantive interpretation of the
way the stimuli are amanged in a space of a given dimensionality
be found? Shepard (1972) suggests that one should take the following

factors into account when attempting to interpret a spatial representa-

tion. One should look for rotated or oblique axes that may be readily
interpretable. Are there a set of clusters that can be interpreted?

What other kinds of orderly patterns (such as the arrangement of the

stimuli to form a circle, in the case of color names or chips) are there
in the space?
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Typically, the procedure is used in conjunction with the other meth-
ofs. One attempts to strike the balance between an interpretable
configusation and a good fit. Tt is considered undesirable to analyze
the data in so many dimensions that they cannot be interpreted, even
though the fit may be good. However, the important aspects of the
configuration are not always in the first few dimensions. In some
cases the higher dimensions may help clarify the interpretation. Thus,
the rule of thumb as stated by Wish (1972, p. 2) is, “If an attribute or
property can be fit well in # dimensions, but not in # — 1 dimensions,
then there is reason to keep the last dimension.”

The orientation of the resultant dimensions is entirely arbitrary.
As 2 result, additional technigues may be used to help with the inter-
pretation of the spatial manifold. Rotation of the points to simple
structure may facilitate the analysis of the configuration. This has
become standard procedure in certain MDS programs {cf. KYST).
Cluster analyses, such as Johnson's {1967) hierarchical cluster analysis,
may also facilitate interpretation. Additionally, linear regression may
be used to identify attributes in the space (Barnett, 1976; Jones and
Young, 1972; Gillham and Woelfel, 1977). This technique is particu-
larly useful in spaces of large dimensionatity,

While the interpretation of the dimensions may facilitate the deter-
mination of the proper dimensionality of the space, it is not without
drawbacks. Linn's (1968, p. 38) comments concemning the same prob-
lem in factor analysis are applicable here.

Although meaningfulness or scientifie interpretadility are important considera-
tions in the development of scientific theery, it is not a very sound ‘basis for the
inclusion of a construct or fa¢tor in the sclentific domain, It appears that the
post hoc meaningfulngss given to a factor is limited only by the analyst’s ability
10 rationalize the obtained factor loadings, The secand, and more respectable
criterion of replicebility, while basicatly seund, is Timited by the Tock of a good
method of comparing factors. The usual “oye ball" mothod of comparing factors
is subject to the same criticism as is the meaningfullness criterion.

The use of graphic representation may aid in interpreting dimen-
sionality. This may also lead to crroneous conclusions, Only three
dimensions at a time can be visualized. The immediate result is that
solutions which require more than three dimensions cannot be exam-
ined in this manner. Thus, there is a tendency to limit solutions to two
of three dimensions so that they can be visualized and readily inter-
preted. However, often solutions with greater than three dimensions
are common, especially when large numbers of stimuli are scaled.
Clearly, the use of visual aids in interpreting the spatial manifold and
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its use in determining the proper dimengionality has severe limitations.
Perliaps the most severe criticism of labelling dimensions s that the
practice may be running against the spirit of the method. The use of
MDS requires that the dimensions be taken into gecount simulia-
necusly. By attaching an attribute label to one dimension of the space,
it is implied that alf the variance on the dimension could be explained
by that attribute. This need not be the casc. Often, there is not an
isomorphic relatien between attributes and dimensions. There may
be several lincarly related attributes which can fit in and semve in
interpretation of a space. Also, some attributes such as color or cul-

ture may be multidimensional. A dimension refers only to one of a
set of orthonormal reference vectors, which is the result of mathe-
matical operations, and not to an attribule, Thus, the removal of 3
dimension from a solution because it cannot be labelled with an attri-
bute should not be a criterion for determining dimensionality.

Metric determinacy
The ultimate criterion for determining the “true” dimensionality of 2

spatial manifold as measured is the ability of the dimensions of the
space to reconstruct the original dissimilarity matrix. Under ideal condi-
tions, a space of m dimensions should be equivalent to the original
n ¥ n distance matrix, This idenity can be shown
A -AT= A 4]
n¥m A¥XH
The discrepancy between the two matrices may be considered the
error which a spatial manifold of a particular dimensionality enters into
the analysis. Thus egn. (2) becomes,

A-AT=

nXem

ArE
n¥Xn

The degree of error may be determined by the variance unaccounted
for by the measure of metric determinacy (u) (Shepard, 1966; Youns,

{1970).

The index of metric determinacy (1) is defined as the squared corre 3

lation between the true distances

(4)

nXm

and the reconstructed distances
(A -A™. -

nxm

@ §
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It follows that,
€=1—-p (3)
\'i:hcl'c ¢ is the variance unaccounted for by a space of a particul
dimensionality. This value equals zero when ali a1 — 1 dimensions af(:
used, :?nd it increases as the dimensionality decreases. Th.e metric
determinacy statistic, however, assumes that the measured distances
tjzi) are true, reliable measures. If a random component is in.ciuclec.i
in {A), then a value of O for p only indicates that the MDS configura-
tion perfectly reproduces the (partizlly) erroneous raw scores, error and
all. The use of metric determinacy as a sole criterion ,thcrcfore
woul_d always result in a complete decomposition of t'he distanc'
matrix, whether such was warranted or not. ‘

An illustrarion of static tests for divension:
In February 1975, 15 subjects bilingual in French and English
_complctcd 45 direct pair comparisons between 10 different lexical
items dealing with the mass medin, The concept's fanguage Enﬁ‘sl
or French, was randomly assigned, The assumption wnder invc,sti;gatilo::
‘\;r.as‘lhal. a dlmensiop would be present in the space which would
sl’l’s‘rcnual:c the English words from the French. The data were aggre-
gated to prflduce the lower triangle of the mean matrix p'rescntcgf'n
Tab]_cl. This matrix was then entered into a metric scaling pro ]
(Gal‘lleo 2.4, Serota, 1974) and a non-metric program (K\B’SEI‘) Ef;«hm
spatial coordinates for the entire N — | dimensions from th G. li o
progeam are presented in Table 11, . ® alieo
Nc_x:, the authors attempted to determine the proper dimensionalit.
of this Cfmﬁguration using the methods described above, The scree t::ﬁ
of th.c eigenroots from the metric data produced a thrcc-dimcnsion:l
sEIunon‘ as §hown_ below (see Fig. 2). The measure of stress suggested
that a six dimensiona! solution provided the best fit. This was arrived
at thro_ugh a scree test of the stress values. This is shown in Fig. 3
According to Kruskal {19644a), this solution {stress =.039) provicliilq a:
%nod to excetlent fit. Green (1975) suggested that for a space gcncrnt.cd
rom {Olconccpts that only two dimensions should be retained if the
solution is to exceed 2,5 for ratio of the number of degrees of freedom
m the stimuli, to the number of degrees of freedom for the solution
At this p_oiut, an attempt was made to interpret the spatial manifotd
The first dimension in both the metric and non-metric solution sepa:

: rated the electl"onic media fram the print media. The second dimension
could be described as an entertainment-information dimension. Beyond
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TABLE!
Mean distancs matrix for bilinguals In 2 mixed language condition
1 2 3 4 5 L] 7 B 9 5]
1. Bocks 0
2. Magazines £0,80 kil
3. Des Joumncaux 993 40.20 .0
4. EaMusique 96.73 9546 94.00 .0
5. Radio 105.86 33.71 £750 25.71 0
6. La TélEvision 108.43 92.36 ". 68.64 54.57 48.27 a
7. Sponis 18157 143.00 \  89.93 111.29 7293 5443 .0
8. LeCinéma 95.79 118.7t \ 94.43 49.42 7264 42.07 99.50 £
9. LTInformation 6593 51.36 2021 98.90 3050 2600 Bi43 60.00 £
10, Entertainment 1143 48.00 5362 18.14 36.00 40.64 3357 19.07 67.36 .0

N=15

TABLEI
Spatial coordinates for bidinguals in a mixed language condition

1. Books -73.85 17.12 19.40 15.00 9.66 ~9.66 -.06 -12.33 219 -25.10
2. MagazZines —60.12 -24.18 —23.52 -1.56 -11.74 -3.25 -.0§ 1449 -3.08 -19.33
3. Des Joumaux ~16.97 -41.68 ~2.81 2,70 ~3.24 10.46 -0 ~6.5% -6.32 899
4. La Musique 559 5047 —~3152 ~1.61 —4.28 243 01 ~4.57 2795 353
5. Radio 20,72 247 -23.15 -22.10 20.35 -24 £2 4% ~2354 —4.43
6. La Télévition 3043 06 9.02 =15.16 -18.01 —4,59 £02 -14.22 -1653 4.13
7. Sporis 8019 -29.87 -.58 2342 287 ~147 06 60 1376 ~3150
8. LeCinéma 1942 4255 1362 ~4.92 =373 4.1 .02 14.15 -9.62 -13.07
9. LInformation -856 -30.24 24.76 ~23.38 648 ~2.63 -1 4.05 2546 29.39
19. Entertainment 2,11 13.29 -5.22 3392 L.67 =238 .00 4.01 —-1028 4B.40 E
Eigenvaiues froors) of eigenvector matrix
17,624.34 896295 4320.12 3266.46 3065.40 183.64 01 —B59.44 269865 -544509
Percentage of distance accounted fer by individusi vector
4978 25.29 12.19 9.22 301 52 00 ~243 ~1.61 -15.36
Cumulative perceniages of real distance acconnted for
49.78 7507 87.26 9647 99.48 100.00 10000 97.58 89.96 7459

Cumulalive percentages of total {real and imagincry} distonee aecounted for
66,73 10063 116.97 129.23 133.36 13405 13405 130.80 120,60 100.00

Trace 26,438.63

£LT
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Fig. 2, Scree test of cigenroots.

these two vectors, the other dimension could not be readily interpreted,
It is interesting to note that no language dimension could be readily
identified. Clusters were next examined and the only ones present in
the space were the ones discussed above dealitig with the mass medin.
The graphic representation of the first twd dimensions is presented in
Fig. 4.

Since the language variable was not manifest in the configuration,

[-1h 13

1 3 4 35 4 Y a 9 1W0OMN
Rool, number

Fig. 3. Scree test of stress valucs,
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Fig. 4. Bilingual mixed-language space (English concepts are circled), M= 15,
1, Books; 2, Magazines; 3, Des journaux; 4, La musique; 5, Radio; 6, La télévision;
7, Sports; 8, Le cinéma, 9, L'information; 10, Entertainment.

it was decided to regress a vector of zeros (English) and ones (French)
through the space. This operation was performed on all nine dimensions
which resulted from the metric solution [5]. The correlation coef-
ficients of the language vector with each dimension are presented in
Tabte I1I. Because of the problem in regression analysis that as the
number of columns approaches the number of rows, the multiple
correlation appreaches 1.0, only those dimensions with an #* > .15

TABLE Il

Cortelations of individial dimensions from blllingwal mixed Janguage space with language
eelogr

Dimension r 2

t 147 027
p) 141 020
3 318 101
4 -.535 .287
] —d441 194
] 460 212
p

g ~ 155 024
9 285 024
10 274 075

* Dimenslon 7 was not included In the analysis because it was a vector of zezos.

LAy
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*were retained in the tegression. These were dimensions 4, § and 6.
Together they produced an R?= .69, significant at the 056 level,
Clearly, the language vector was present in the space, although small
compared to other attributes on which the words were arrayed. 1t
is of interest to note that if only the dimensions suggested by the
standard procedures were retained as the solution, the phenomenon
under investigation might have been remaved from the data.

But the question of concern is, which sotution, 2,3, 6orall 9 dimen-
sions is the best? While the two dimensional solution was readily
interpretable, it accounted for only 68.2% of the variance, leaving an
error term of .318 and a stress level of .175 (a poor to fair fity. The
scree test suggested three dimensions. However, the third dimension
could not be interpreted and over 20% of the variance was removed
from the analysis (u = .788, £=.212). The inclusion of this dimension
reduced stress to only .126; still a poor to fair fit. Six dimensions
produced a good to excellent stress level (,039) and accounted for 90%
of the variance. Additionally, the language vector could be explained
quite well, All the dimensions with an 2 of .15 or greater were included
in the six dimensions. Clearly, the six dimensional solution is the best
discussed so far, in that it retains an attribute known to span the space,
even though that atiribute does not correspond to any dimension.

2. Dynamic measures

When time-ordered measurements are taken, additional measures of
dimensionality are made available. Ultimately g'Le reasoning for select-
ing o subset of the dimensions from the empirically identified set of
dimensions, cven though that subsect jess-than-perfectly reproduces
the raw data, is that the raw data themselves are assumed to be in
error. Usually this error component is assumed to be random measure-
ment error or unreliability; it is usually assumed also that it is this
random component which lies along the smallest eigenvectors. At least
two procedures suggest themsclves as a fest of this hypothesis, First,
if the latter dimensions are unreliable, their over-time auto correlations
should be near zero. Danes and Woelfel (1975) report correlations of
the 16 dimensions recovered from a 17 X 17 matrix of dissimilaritics
across a five-week interval (see Table [V). These data show the fast
five eigenvectors are randomly related across lime, but note that the
11th eigenvector is substantially more stable than the Tth through 10th
eigenvectors. -

A second, more tigorous method follows from an extension of
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TADLE IV

Sublity coefficients of the coordInetes obiained at two polnts In time * H
Woslfe (19781 p ime *. Source: Danes and

Coordingte Overdime corrdlation (Corzelation) ?
1 97 94
2 81 .65
k| 86 74
4. rlil 49
5. 16 57
6. E-13 40
7 .38 14
3 32 10
9 37 .14
0. A4 19
1 56 31
12. 04 02
13. -.014 00
14. o0 00
15, -.29 .08 :
L6. -.074 .op

* The coordirates arc tank ordered in terms of their absolute eigenront value,

the repression method suggested earlier. Given that an attribute is
regressed onto the set of factors at two or more points in time, stability
and "meaningfulness' of a dimension across time requires that the
regression coefficient of the factors vis & vis the attribute vector remain
the same, since those cocfficients represent the projection of the attri-
bute vector on ihe factors. Thus, Gillham and Woelfel (1977) present
the regression cocfficients for two attribute vectors across the factors

TABLE V

Unitandasdized cegression coefflcients from mulil
cd nle regression of qualitatl il
petcelved position, Source: Giliham and Woellel (1975} ¢ e porltian tpon

Axls Time ene Time two Time threo
Political judgments 1 .16 —20 -.15
2 =17 —-07 -.02
3 07 =11 -.03
Re= 51 93 52
Quaniitativeness judgments 1 .11 49 15
2 22 16 d1
3 -27 ~.28 -.06
Ra 80 a9 Jas

p < .01, oneailed,




e z RN AR
A o i e RS
g
l 228 229
l 2 2 e, of this syclieal pattern, both based on auto regressive models.
I ata 4t 8 Fisst, we might calculate the correlation between the value of the
s Jo 3 ith eigenroot with itself at each carlier point in time, giving the series
of autocorrelations .
£ e ¢ a 3 Ve Face (=10 £ he- Ar=2)s o=+ TAC Ma—-m) 4y
. 4 € for n periods of time. In the present example, for both A; and A,
Fig. 5. IareA(r-89) = 1.0, indicating a precise one-hour cycle. (Due to the
complications of both motions, other autocosrelations of near 1.0
of a metric MDS space at three points in time in Table V. These data scores will be found as well over longer time intervals.)
show the three factors in the ilustration Temaining quite stable over A sccond, mose comprohensive procedure would requirte regressing
the intervals. - the value of each eigenraot at ¢ on its entire history ol vatues in the
Meither of these two procedures can really be called *‘dynamic recursive multiple regression cquation (sec Glass ef al., 1976; Box
in an important sense, since they really relpresent CZTflIP;l':?:;zi ' and Jenkins, 1970). :
i i ver time. When genuinely process al da )
;t:,:f. c;g&::::,n:n:‘;r: po“:'erful meth?ds are avaitable. To flustrate "z=¢t?\(r—:)+°=?‘u—ﬂ---“(v—n)k(r-n-u'*f (5
these procedures we define three points, A, B,and C, 85 re§pect}vcly Not only does eqn. {5) present the information available from the set
the endpoints and axis of two equal-length clock .hands in Fig. 3. of zero-order autorcgressions in {4), but it makes possible the empirical
Assuming a rotation scheme that holds ¢ on the orngin and rotates to determination of external events on the process. 1T we assume that a
analytic simple structure at each time interval (Woelfel ef al., 1975), the stimulus is introduced into the sequence at a point in time tp we
gimensionality of the set of points (4, B, €) will be one on the hour and may create the dummy variable X', where X = —1 for all points prior
(roughly) 38 minutes past the hour, and two dimensional at all other to tp and +1 for all points afterward. Any number of such variables
ties. Even assuming perfect measures of the mterpomtr:nsl;ar::;s[ may be fit into eqn. (5) to vield
B and C continuously across 1ime, it is very unike i
;r::onrgo?t‘ dil?g:-lt psychometri:ia.n,-—using all the techniques named A= Aoy Feahemn o ¥ Agen i h-m BT E (6)
heretofore, w.ould ver u!u:ovcr .the..s:n“tple :jynamlc (11?1,“?;;:;:3:‘)] ; In cqn. (6), the & give the effects of each prior value of A on its present
pattern in this configuration which is given to an appr to detection : value, and Iy oy = the total effect of the history of M in its value at £.
Fig. 6. Two procedures do suggest themselves, however, 10 The §, give the effects of the it outside event on the process, and Z;, f;
gives the total effect of all outside events measured. ’
E— If we expect that variations in the rank of the spatfc are affected b_y
» cantinuously varighle outside variables 7, we may Incorporate their

effects into the model similarly as

MEaidp-ptehpent o ta t-myen-n H Xt nZn 1€}
+ Y1 Z 1y t . Bl

where the 7, represent the effects of variable Z at cach point in time,
and I, ¥, represent the total effect of the history of Zon A

While eqn. (7) can be further generatized to include effects of inter-
L actions among outside cvents, variables and their histories, these gener-
. lizations are [airly obvious in the context of the regression equation
and will not be dealt with here, Of greater salience, however, is the ob-

-] ¢ LH

0 75
Time {min}

Flg. 6. Eigenvalues of the set of interpaoint distances in Fig, 5 by time {min).
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servation that the time-series of measures represented in eqns. (4)
through (7) anticipate occasional zero values for some of‘_the Arat sorr_le
of the points in the series. This means that evena nult clgenv-cctor “f'"
frequently be retained in a time series. Put another way. for time-series
analyses of MD$ processes, the dimensionality of thg? process should
not be assumed to be the small set of eigenvectors which persist across
all time points, nor even a relatively stable subset, but rathe.r the_lurg,esl
dimensionality found at any point. Thus for any two points in time
i and j, if r (the rank of the space) at f; is r;, and at 4= =r +I§',
then k zero eigenvectors need to be added to the space at f; before it
is included in the time-series cquations,

Summary

In general, most of the techniques now in common use for the
determination of the dimensionality of MDS spaces {end to undlcr-
estimate the number of dimensions needed to represent the undcrlymg
configuration accurately. This tendency is exapgerated when time-
sequenced MDS observations are under study. Fortunately, e¢co-
nometric time-scries (autocorrelation) procedures may prove helpful
in resolving this problem [6].

Notes

Any two points may be connected by a line, yielding a single dimcr_nsion d1fl:cf—
entiating the objeets, Three points may be connected by a planc_. No' informaticn
us 1o their diffesentintion would be lost by indicating the objec_ls scale val.ucs
on the two dimensions, The same holds far four points in a F.lelmld and r points
in a hyperspase of n — 1 dimensions. It should be noted that if sy l_hrcc or more
points lie along & line, fewer dimensions would be nc?dcd to p.rcc:s?ly deseribe
the system. Note of course that in a dissimilarity matfnx t;l:c majlor diagonal con-
i hich by definition results in a space of rank n — 1. o

'tlrt:?: :L::z:-t:alcihcydata matrix is not symmetrical. 17 it mccts.tms criterion
then the eolumns and the rows are equal and only one need be ct_):nstdcrcd. )
The reason why the absolute values of the eigenrodéts are l_.ucd is bccaufe metqc
senling often results in a non-positive semidefinite matrix. When this matrix
is orthogonally decomposed negative roots result. As a rosult the absclute vaiue
rather then signed-value should be used in the scree test. )

For r=2, the ratio of the degrees of freéedom for the stimuli to the degrees of
freedom for the solution is 2.65. For rx 3, it cquals 1.88. For r= 4, 1.5C and
fi'hegvs;;:;: anulysis was performed with the sesults from the KYST Progru.
R =73 and R*®=_54. This multipte was produced from dimensions 4, 5, and 6

whose r > .15, the same criterion as in the metric case, Dimension 4,+r=.25,3,
r=.50; 6, r=_41. It is interesting that the metric solution provides much beticr
recovery of the language attribute than does the non-metrice. )

6 A Metric MDS scaling program (Galileo 4.0) which is specifically designed to
deal with time-sequenced MDS spaces is available from the authors,
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