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I. INTRODUCTION

All measurement systems, whatever their type, share as a basic goal the
determination of difference or separation among the elements measured. The
crudest measurement systems are able to detect only the presence or absence
of gross differences, while the most sensitive and precise measurement sys-
tems can reliably detect the smallest of differences and relate their magnitude
to any other such difference as ratios. All measurement systems in practice lie
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334 JOSEPH WOELFEL AND JEFFREY E. DANES

along a continuum between these extreme points. These differences or separa-
tions among the elements scaled may be thought of as distances, and
multidimensional scaling (MDS) capitalizes fully on the analogy to spatial
distances implicit in the measurement model. MDS procedures construct a

7 multidimensional space or map in which the objects scaled are arrayed such

that the distances between any two objects in the map are functions of their

'~ measured distance from each other on the scaling instrument. To the extent
that the measurement system used by the researcher yields outcomes toward
the precise end of the measurement continuum, this spatial analogy becomes
increasingly appropriate.

Although several variations of this analysis system exist (Carroll & Chang,
1970; Coombs, 1958; Harshman, 1972; Kruskal, 1964a, b; Lingoes, 1972;
McGee, 1968; Pieszko, 1970; Shepard, 1962a, b; Torgerson, 1952, 1958;
Tucker & Messick, 1963; Tucker, 1972), all share the central notion of a
spatial coordinate system as a frame of reference within which symbols are
arrayed and therefore “pictured.” Insofar as they constitute projections of
distances among points into a coordinate system, MDS procedures provide
the closest analogy to mechanics in the social sciences. ‘

The many variants of multidimensiona! scaling may be broadly classified
as either “metric” or “nonmetric”; since Norton (in this volume) presents a
chapter (Chapter 10) on one variant of nonmetric multidimensional scaling
(smallest space analysis), no further elaborations will be made here.

1II. METRIC MULTIDIMENSIONAL SCALING:
THE CLASSICAL MODEL

The metric multidimensional scaling model was the first multidimensional
scaling model developed and it is known as the *“classical” approach. Follow-
ing Young and Householder (1938) and Richardson (1938), among others,
Torgerson (1952, 1958) is most well known for general improvements and
dissemination of this approach. Unlike the nonmetric approach, the metric
procedure begins with a precisely scaled # X n data matrix S (see Table I)
and concludes with an identically precise multidimensional space. Any cell 5;
in this matrix represents the measured dissimilarity or difference between the
ith and jth object or concept scaled. In a typical metric study as usually
practiced in the communication field, two of the objects to be scaled are
chosen as a “criterion pair” and the difference between them assigned 2
numerical value like 10 or 100. All other pairs are then compared as ratios to
this criterion pair in a statement of the form: “If ¢ and b are u units apart,
how far apart are ... and ... ?” When there is more than one respondent,
estimates of all samples responses are usually averaged within each cell s;
across all sample members to yield the average dissimilarities matrix §
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(Gillham & Woelfel, 1977). The matrix of intercity distances in Table I is an
ideal type of such a matrix. .

Though its foundation can be traced back to the Greeks and beyond
{Serota, 1974), the modern basis for metric multidimensional scaling was laid
in 1938 when Young and Householder (1938) presented a technique for
describing the location of points in a spatial configuration given only the
separations (distances) among the points. Young and Householder (1938)
converted the matrix of interpoin! separations S into a matrix of scalar
products B, whose elements &; are defined as

b =ik + 5 - 5 )
where the point P is an arbitrary point in the space and is used as the origin
of the space.’ Although there is a unique B matrix for each point selected as
the origin of the space, the separation relations among the points in the space
remain invariant regardless of which point is selected as the origin,

Torgerson (1958) describes a procedure for locating the origin at the
centroid of the space, The ceniroid is the exact center of the configuration of
points, and Torgerson's procedure simply ensures that the resulting map or
plot will be centered on the page. While functionally equivalent to the Young
and Householder solution, Torgerson’s procedure is more commonly used.
Any element b*, in Torgerson’s (1958) “doubled centered™ scalar products
matrix is given by

0%y = 3(s; — 55 = 5L +57) @)
where
2 _ 1 g 2 1w 2 2o 1 En: En: 2
T 25 S= n 25 si=—= 23 25
=1 J=1 il

That is, placing the origin of the space at the centroid (geometric center) of
the space is accomplished by subtracting out the grand row and grand
" colummn means leaving only (in analysis of variance terms) the “interactions,”
Geometrically, any b*; element represents

b*; = cos g,/ R'|IR/| (3)
where cos 6; is the cosine of the angle between the two vectors. {R[ the
vector length of point i from the origin (centroid). and |[R/] the vector length
of point j from the orgin (centroid).

Once the B* scalar products matrix is obtained, establishing the coordinate
system is fairly straight forward; it simply consists of a factorization of the B*
matrix. This factorization is identical to the factor analysis algorithm familiar
10 most communication researchers—the only difference is that the B*
matrix is input instead of the usual correlation matrix. It consists essentially

The notation B, b and B*, and b* are taken from Torgerson (1958).
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of finding the eigenvectors of the B* matrix. The output of this analysis will
be a & X r matrix R(p =1, ri o = ], k) where each row R/, represents the
projections of the ath concept or object (city, in the example of Table I) on a
set of r orthogona) basis vectors e,. The fact that there is a single index (u)
shows it is a vector (no index would represent a scalar; two indices would
represent a maitrix, and so on}. The (a) is placed within parentheses to show
that it is not an index, but rather only a marker to describe which vector we
are referring to. Furthermore, the index is superscripted to show that this
vector refers to observarions or measured values. (Superscripled quantilies are
called “contravariant”; subscripted quantities are called “covarianl™ R¥,
therefore, is a contravariant vector.)

Similarly, each of the e, represents a unit vector (the single index shows
that it is a vector), and the fact that it is subseripted rather than superscripted
indicates that each ¢, does not refer to observations of measured values but
rather to an arbitrary reference vector onto which the measured or observed
values (Rf,,) are projected. Since it does not refer 10 measured values, il is a
covariant vector and hence subscripted.

Each of these ¢, (g = 1. r) veclors represents a unit reference axis orthogo-
nal to each other such reference axis, and thus the set of these basis vectors
constitutes an ordinary r-dimensional Carlesian coordinate system. These
vectors are usually called dimensions (sometimes factors or eigenvectors) and
the fact thalt more than one such vector is wsually needed to represent the
configuration gives rise to the term “muludimensional scaling™ In fact, it is
always the case that r € K — 1. since any & points can always be represented
on & — 1 orthogonal coordinates, Any three points, for example, can always
be fit on a (iwo-dimensional) plane, but may in some cases be on a
{one-dimensional) line. Factoring the centroid scalar products matrix (B*)
derived from the intercity distance maftrix in Table I yields the results given in
Table I and Fig. 1. Each column of Table II represents the projections of the
cities on a reference vector e,; the first column, therefore. represenis the
projections of the cities on the first unit vector e,, the second. their projec-
tions oOn e;, and so on. The reader can easily verify that these columns are
orthogonal by calculating the correlations among pairs of columns, all of
which will be 0.0,

Each row of Table Il represents the projection of one of the cities’ position
vector RE, on the e, basis veclors. thus the first row RJ;, represents
the projection of Atlanta’s position veclor on the space. so that R/ =
— 808.7 R}, = 481.3. etc. Moreover, since the transformation by which this
solution is achieved is distance preserving, these numbers are to be under-
stood in the original units of measure—in this case kilomelers. Plots based on
the first two dimensions (columns ¢, and ¢,) of Table Il are presented in Fig.
1. Actually, the figures in Table Il have first been reflected (multiplied by
— 1) because the algorithm generated an inveried mirror-image of our con-
ventional representation of the earth’s surface—the algorithm. of course.




TABLE II

GALILEC COORDINATES OF 16 SELECTED CITIES IN A METRIC MULTIDIMENSIONAL SPACE NORMAL SOLUTION
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Fic. 1. Plot of factors | and 2 from the unstandardized analysis.

cannot know which half of the world we like to consider the “top.” Given this
reflection, R/}, = 808.7 and R}, = — 481.3 tell us that Atlanta is 808.7 km
east and 481.3 km south of the geographic center of these 16 cities.

It is worth noting also that two dimensions are enoungh to give a reasonably
complete representation of these data. The third dimension (not plotted)
represents the {minor) curvature of the earth; all the others represent round-
ing errors (the original data are not perfectly error-free). The determination of
how many dimensions 1o retain is based solely on the relative sizes of the
projections on the dimensions. When the projections are too small to be
worth considering, or are within the precision of measure, they are ignored.
As an aid in determining when they are *“too small,” we note that the squares
of the projections on each factor sum to their corresponding eigenvalue, A,
(Note that p is in parentheses. indicating that it is not an index; since A, has
no index it is a scalar.) That is.

N

A = 2z (R{‘a))z (4)
=]

This value, A,,. may be thought of in ANOVA terms as the amount of

variance explained by the uth dimension. The total variance is called the trace

(T) and is given by the sum of the eigenvalues. ie. 7 =2 _/A ;. The

proportion of variance explained by any single factor. therefore, is given by

its eigenvalue divided by the trace. or

BVAR = 100% /T (5)

Statistical tests for the significance of this ratio are not known in the MDS
literature but the reader is referred to Barnett and Woelfel (1978) for a mare
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thorough discussion of the question of dimensionality. These authors con-
clude that valuable information can be found in factors much smaller than
typical practice usually retains, and they recommend retaining all or nearly
all the dimensions, particularly when precise scaling procedures and large
samples have been employed. (Most typical procedures now in use would
ignore the small third dimension in this example and thus conclude that the
world—or at least the United States—is flat.)

III. METRIC RATIOS, METRIC AXIOMS, AND “METRIC” SPACES

In the process of “measuring,” the term metric usually refers to the initial
standard for which other numerical values of separation are obtained by
comparing these other magnitudes to the initial standard. As such, physical
distances are metric ratios, proportions, or multiples of a consensually shared,
prespecified distance: the meter. In the language of mathematics, however,
the term “metric space” usually refers to a space which is isomorphic with
certain prespecified axioms; for the metric Euclidean space, these axioms take
the following form (cf. Blumenthal, 1961)

s = 0 if and only if i = j (Positivity)

S5 = S (Symmetry) ©
forall i,j andk (Triangle inequality)

With the presence of positivity and symmetry, all that is needed to make the
space “metric” is the requirement that any triangle formed by any three
points be real; that is, that any side of a triangle not exceed the sum of the
other two sides. These constraints are clearly met by the intercity distance of
Table 1. In communication research, however, the triangle inequality rule is
usually violated by the original data set. Thus, when one is working with
reliable metri¢ ratios provided by human respondents, metric MDS fre-
quently results in complex, non-Euclidean multidimensional spaces char-
acterized by both real and imaginary eigenvectors in R.

The term “imaginary” has caused unfortunate misgivings among psycholo-
gists; some psychometricians have assumed that imagmary eigenvectors
cannot be meaningful and, therefore, represent measurement error. Thus, if 4
is “close” to B, and B is “close” to C, the failure to find the logically expected
“nearness” between A and C has usually been attributed to faulty data

_gathering procedures. Beginning with Shepard (19624, 5), Kruskal (1964 a, b),
Guttman (1968), Lingoes (1972), and others have devised “nonmetric™ proce-
dures which eliminate triangle inequality violations by iteratively transform-
ing data into a “metric space” of a prespecified number of dimensions.

. Research by Danes and Woelfel (1975), Serota, Cody, Barnett, and Taylor
(1975), and Woelfel {1977), among others, indicates, however, that respon-
dents frequently and reliably report “inconsistent” separation judgments.

S.. + S 28
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Collectively, these studies suggest that “inconsistent” separation judgments
result from the differential interpretation of a given concept: that is. the
meaning for a given symbol frequently varies with the context in which the
symbol is presented. For example, “red” and “orange” may be conceived of
as similar; “orange” and “tangerine™ may be conceived of as similar; but
“red” and “tanperine” may be viewed as very dissimilar. If such an example
were gquantified with metric ratio data, this would result in “inconsistent”
separation and result in a complex muliidimensional “metric™ ratio space. In
general, the spaces yielded by typical communication separation matrices are
multidimensional and complex.

1V. STRUCTURE ‘OF MULTIDIMENSIONAL SPACES: CLUSTERS
AND ATTRIBUTES

Multidimensional scaling was conceived of primarily by psychologists to
measure psychological structures, and early analyses usually were confined to
efforts at identifying different characteristics that might be associated with
different regions of the space. Five procedures for such analyses are most
common. First is a simple “eyeball™ approach, similar to the intuitive inter-
pretation of factor analyses, where the investigators carefully scrutinize the
plots of the configuration to determine obvious features. Very frequently the
graphic simplicity of the multidimensional plot (e.g.. Fig. 1) makes obvious
facts concealed both by the separation matrix and other analytic procedures,

Second, many researchers frequently perform cluster analyses on either the
separation matrix or the coordinate mairix R to identify meaningful clusters
of elements. Those elements which cluster {ogether are wsually thought to
possess some common characteristic(s). Interpretation of these analyses give
precision to “eyeball™ analyses, and the reader is referred to Chapter 9 for an
explication of such procedures.

A third common analysis consists of attempts to locate linear arrays of
“objects™ which might express fundamental psychological attributes. If all the
concepts in a space, for example, could be seen 1o lie on a line from “bad™ 10
"pood.” a “good-bad”™ attribute might be inferred. Many early analysts, in
fact, hoped or assumed that these attributes might correspond to eigenvectors
or dimensions themselves, since they felt the basic attributes of experience
would prove to be independent of each other. but few workers still" hold 10
this view today (Rosenberg & Sedlak. 1972: Cody, Marlier, & Woelfel, 1976;
Schmidt, 1972). .

Very substantial evidence suggests rather that the orthogonal factors of the
MDS space should be thought of only as 4 convenienl reference frame (much
like the numbered and lettered grids on street maps). Attribute lines may well
take any orientation within this grid. and frequently the number of attributes
found preatly exceed the number of eigenvectors.
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"This suggests a fourth common procedure for analysis of the structure of
an MDS space. Locating such attribute vectors in the space can be accom-
plished very simply by capitalizing on the orthogonality constraints on the

eigenvectors to yield the regression equation (see Gillham & Woelfel, 1977):

A = ByyRfyy + BoyRpy + -+ +B)RY, O
where 4 are the measured scores of the concepts scaled on any attribute
scale, B, the standardized regression coefficients representing the cosines of
the angles between the attribute vector 4 and the orthogonal Rf, (due to the
orthogonality constraint, the B; are equal to the zero order correlations r,, -,
and R, the eigenvectors (factors, axes, dimensions) of the solution. Even this
procedure contains important flaws however. Among these are the assump-
tions implicit in (7) that each attribute or trait is equally salient or relevant for
every element of the domain and that each trait is of infinite or at least
indefinite length (Cody et al., 1976; Cody, 1976).

Fortunately, a fifth procedure which overcomes these and other problems
requires simply that the words which describe traits (e.g.,. friendly, warm,
sharp, unobtrusive, etc.) be included as concepts in the original separation
Judgments. Line segments between semantic “opposites™ (e.g., good—bad) can
be taken as firite attributes whose position and orientation vis-i-vis the other
concepts in the domain are completely given by the scaling solution itself.
Except for the difficulties due to respondent burden and other economic
factors which occur when k (the number of concepts scaled) becomes large,
this approach seems to be free of the problems inherent in the other methods.
This procedure does not require that any empirical parameters be constrained
in advance, but rather determines the number, length, and orientation of
atiributes by measurements.

V. THE COMPARISON OF MULTIDIMENSIONAL SPACES

As interesting and informative as these techmniques are, by far the most
interesting use of multidimensional scaling is for the comparisons of spaces
across groups and across time, since these transformations provide the basis
for projections of future events, causal analyses, and ultimately engineering
applications.

Since the axes in a multidimensional space have an arbitrary orientation,
some scheme of rotation and translation is necessary to “match” the spaces as
closely as possible before such comparisons are undertaken. The transforma-
tion required is ome which will minimize the discrepancy between spaces
while leaving the measured distances within each space invariant. These
transformations (frequently called “Procrustes” rotations to distinguish them
from the analytic rotations—like “varimax” or quartimax”—common in
factor analysis) are of great theoretical significance, since they establish a

11. MULTIDIMENSIONAL SCALING
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common frame of reference across respondents. observers, and time periods.
Alternative choices of such transformations will result in different reference
frames which will determine the form of regularities observed (Weelfe], 1977).
In its most general form, this problem was solved independently by Cliff
(1966) and Schonemann (1966). The general solution involves rotating a
matrix of coordinates R, at r + | about its center until the sum of the
squared distances of each point in Rf, at 1 + 1 from its counterpart in
another space Rf, at ¢ is at a minimum, This transformation conserves
position in that it minimizes 1otal motion when + and ¢ + 1 refer to times of
measuremeni, or tolal difference if r and 1 + 1 refer to any arbitrary groups.
Whenever two or more scaling solutions—or even facior analyses—are to be
compared, Procrustes-rotation is reguired; rotating all the spaces to a criterion
like varimax or any other analytic solution will not minimize artifactual
differences.

Under many circumstances it is desirable 10 weight these rotations. In an
experiment. for example, in which some concepts are manipulated and others
controlled, one would try 10 conserve the position of the unmanipulated
concepts. but would expect the manipulated .concepts to move freely. Under
these conditions, the control concepts should be assigned unity weights and
the manipuiated concepts should be assigned zeros. Under more complicated
conditions—such as those in which concepts were known to be measured
with differential reliability-——continuous variable weights may be assigned.
The key function of these weights is to. assign differential stability to the
points across the rotations.

Coupled with the idea of rotation is the notion of translation, Translation
means parallel displacement of the space, or relocation of the origin of the
space. Translations represent changes in viewpoint in the space and are of

'great theoretical significance. It can easily be shown that distances within
each data set remain invariant under both rotation and translation, Solutions
to be weighted rotation problem, including transiation to different origin, are
presented in Woelfel or al., (1979). While the Woelfel er al. solution 15 an
iterative solution. it includes translation and is defined over complex coordi-
nates as well as real. A direct, noniterative solution to the weighted Procrustes
problem is presented by Lissitz, Schonemann. and Lingoes (1977), but the
Lissitz solution does not include translation of origin and is defined only for
real coordinates.

V1. COMPARISON OF SPACES: AN EQUALLY WEIGHTED LEAST
SQUARES EXAMPLE

For the cross-sectional comparison of nine groups of subjects when com-
paring the identical concepts and using different criterion pairs (anchors) and
different initial metrics (separations), Gordon {1976) used the rotation proce-
dure given above with each concept given an equal weight,
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The intent of Gordon’s (1976) study was to evaluate whether the ratio
judgements of separation scaling model (i.e., scales of the form: “if @ and &
are p units apart, how far apart are x and p?; Danes and Woelfel, 1975)
would yield equivalent solutions when subjects used different criterion pairs
with different initial separation values. Four groups were given the larger
criterion pair “children’s comedy-crime drama” (CC) with an initial separa-
tion value of either 10, 25, 50, or 100 units; four groups were given the smaller
criterion pair “family drama-medical drama” (FM) with an initial separation
value of either 10, 25, 50, or 100 units. The ninth group who rated the
identical concepts was instructed to “ - - - keep a ten point scale-in mind—
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some concepts raay be less than ten umits apart and others may be more
{p. 9)." Group sample size ranged from 92 to 112; a total of 863 subjects
participated in their study. Each group rated the separations among the

following 13 concepts:

1. Children’s comedy
. 3. Soap opera

5. Medical drama

7. Fat Albert

9. General Hospital 1
11. Medical Center 1

13. Me

NO®RONRN

Adult situation comedy
Family drama

Crime drama

Allin the Family

The Walions

The Streets of San Francisco

On the basis of trace size, i.e., the total variance of each space. the nine
matrices were rank ordered from the low 238.98 1o high 45.100.99: the
following order was obtained: CC10, None, FMIi{, CC25, FM25, FM350.
CC100, and FM100. These results confirmed Gordon's (1976) expectations:
(1) that the smaller the separation between the criterion pair. the larger the
space (CC > FM), and (2) that the larger the numerical separation metric,
the smaller the space. Leaving the “none™ treatment oul. multidimensional
spaces were then compuled and rotated o least squares congruence; the plot
of these eight spaces appears in Fig. 2. The plot of the three principle planes
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appéars in Fig. 3, the plot of the “none” and the CCI10 group appears in Fig.
4

Aside from the rotation illustration, the Gordon (1976) study illustrated
two basic findings important for the ratio judgment of separation measure-
ment procedure: (1) apparently subjects do perceive differential magnitudes
of initial metric separations; that is, larger spaces were obtained when the
criterion pair was smaller although the number assigned to that ctiterion pair
remained the same; (2) although the spatial structure obtained from the
“none” treatment was similar to the spatial stucture obtained from the CC10
treatment, the variance for the “none” group was almost three times as large
as that obtained from the CCI0 treatment group, a finding which indicates
that the use of a criterion pair reduces the potential amount of “noise” in
separation judgments as well as supplying a basic metric for the space.

yz

F16. 3. Comparison of treatments. Beginning at concept number, each point represents
the judgment of that concept using a different eriterion pair. The order of treatments from
outer to inner is;: FM100, CC100, FMS50, CC50, FM25, CC25, FMI0, CCl10 (“none”
treatment not included, see Fig. 4).
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VII. COMPARISON OF SPACES: AN UNEQUALLY WEIGHTED
EXAMPLE

For the study 42 subjects estimated the separation among concepts using
the same ratic judgments procedure used in the Gordon (1976) study; the
concepts mapped were

1. Sleeping 2. Dreaming

3. Daydreaming 4. Intense concentration

5. Marijuana high 6. Good

7. Depression 8. Alcohol high

9. Relaxation 10. CTP
11.  Alpha wave mediation 12, Transcendental meditation
13, Reliable 14, Message Source B
15. Message Source A 16. Me

Two days after the first {#;) measurements werc made. the subjects in this
study received a letter from a well-known credible source (Source A). who
advocated frequemt daily practice of CTP. 4 deliberately undefined fictitious
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psychological activity—the “cortical thematic pause.” After reading the letter
from Source A, the subjects were then asked to estimate the concept relations
again (#,). Five days later a similar letter from a less credible source (Source
B), who also advocated frequent CTP practice was delivered and the concepts
scaled once again {t,). Finally, a fourth (#,) wave of data was collected two
days later. It was expected that (1) two concepts CTP and Source A shouid
converge after the reception of the first message, and that (2) the three
concepts CTP, Source A, and Source B should converge after the reception of
the second message. Those concepts not mentioned in either letter were
expected to remain invariant.

Using separation matrices that consisted of averaged values for each
measurement session, the second space was rotated to the first and in doing

so, CTP and Source A were given weights of zero while the remaining -

concepts were assigned weights of unity. Further, the third space was rotated
to the second and in doing so, CTP, Source A, and Source B were assigned
weights of zero while the remaining concepts were again assigned unity
values. Last, the fourth space was rotated in the same way to the third (see
Fig. 5 and Table III). As Fig. 5 shows, at the #, measurement there is a triple
convergence of Source A (15), the CTP (10), and the Me (16). At the 7,

YL

F1G. 5. Stable concepts rotation.
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TABLE III

MEAN CHANGE SEPARATION VALUE (M
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Concept

(1) Sleeping

(2) Dreaming

(3) Daydreaming

(4) Intense concentration
(5) Marijuana high

(6) Good

(7) Depression

(8) Alcohol high

(9) Relaxation

{(10) CTP

(11) Alpha wave meditation
(12) Transcendental meditation
(13) Reliable
(14) Message Source B

(15) Message Source A
(i6) Me
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TABLE Il
MEean CHANGE SEPARATION VALUE (MOTION) AS A FUNCTION OF AN
UNBQUALLY WEIGHTED LEAST SQUARES CoNCEPT—CONCEPT ROTATION

Concept =T h— 1 L— 4
(1) Slecping 20.923 15.752 19.067
{2) Dreaming ‘ 14,539 18.902 10.285
{3) Daydreaming 22033 12.331 17.785
{4) Intense concentration 20,110 17.462 14.972
{5) Marijuana high 21858 24.39%6 16,136
(6) Good 30.317 23.736 13,200
(7) Depression 20.354 16,093 12,331
{8} Alcohol high 25.877 11.497 14937
(9 Relaxation 31.861 16,341 26.256
(10) CTP 56,8689 67.708° 36.790¢
(11) Alphs wave meditation - 18.728 25,431 12.237
{12) Transcendenal meditation 19.175 15446 . 16.713
(13) Reliable 22446 21220 27.047
{14) Message Source B 27.933 71.548¢  37.551¢
{15) Message Source A 124.533° 74.952¢ 43,308
(16) Me 24.765 25.259 23889

2Denotes the concepts thal were sel to weights of zero: ie.. m; = 0.

measure, there is a convergence of Source B (14), Source A (15), and the CTP
(10), but a divergence (hoomerang elfect) of the Me (16), At time four, after
no new manipulations, litile interpretable motion is evident. (Table III
reflects the magnitudes of these motions.) Note especially the small random
motion (like Brownian motion) of the unmanipulated concepts. Although
substantive interpretations of this experiment are beyond the scope of this
chapter the main point is to. show how the slabie concepts rotation procedure
can aid in the interpretation of muitidimensional experiments.

VIII. MESSAGE DESIGN SYSTEMS

Among theoretical and applied communication specialists, i1 is commonly
agreed that linking one’s message topic with the appropriate message appeals
increases the effectiveness of one’s communications; but what are the “ap-
propriate” message appealis? This section -of this chapter presents a new
analytic development for the design of oplimum message strategies: that is,
within a muitidimensional analysis framework. the topic of discussion now
twrns to procedures designed specifically for the selection of the “best™
message appeals for the design of message contenr,

Ego as a Concept

In the exampie given earlier, the concept “ego™ (me, mysell, my vole, my
position, my purchase, my supporl, elc.) was mapped into the space as were

A L R AR bl SR Rt B o] S ARARLAA RT e d ne g il
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the other concepts of concern. Within the multidimensional analysis frame.
work, the concept “ego” and other such similar concepts appears to have
special properties vis-i-vis behavior. In a political mass communication study,
for example,-Barnett, Serota, and Taylor (1975) have found the political
candidate-ego separation to be inversely related to voting behavior; that is,
that candidate which was nearest to “ego” received the largest share of the
vote in a congressional election. Furthermore, earlier resecarch by market
researchers (e.g., Green & Carmone, 1972; Steffler, 1972) has found products
nearest to the ego (e.g., my purchase or my choice) yield greater sales than
those that are distant from the ego. Additionally, Jones and Young (1972)
havé found the separation between graduate students and graduate faculty to
be predictive of communication frequency, as indicated by the formation of
graduate committees. '

A reanalysis of the data collected by Danes and Woelfel (1975) revealéd.a
strong association between ego-concept separations and evaluation (r = .93)
such that those concepts nearest to ego were rated the most favorable.
However, Green, Maheshwari, and Rao (1969) did not find support for an
ego-concept evalnation association. A casual reading of their work suggests
that the lack of an association between preferences and the ego-concept
separations may be due to the notion that many of the products scaled were
out of economic reach; thus, although the subjects in their study preferred or
liked certain products, they may have felt distant from them because they
could not afford them. Nonetheless, there is ample empirical evidence indicat-
ing that the ego-concept separation relationship is predictive of approach
behavior; the message strategy discussed next capitalizes upon this relation-
ship.

IX. THEORY

We begin by defining the vector space R, where each of the contravariant
vectors Rf,, represents the projections of the ath concept on a set of covariant
(basis) unit vectors ¢,. In practice we expect the Rl to be the result of a
multidimensional scaling analysis of a set of proximities data for k& concepts
where r is the number of dimensions retained. Therefore, we allow « to range
over the number of concepts from 1 to & and p over the number of
dimensions from 1 to r. _

We further designate the concept to be moved or manipulated (the “start”
concept) as Rf, and the ideal point toward which it is to be moved as the
“target” concept R;. The object of the analysis thus becomes one of moving
the start concept along the target vector Rfj, — R, For convenience, we first
recenter the coordinate system with the start concept R;, on the origin by the
translation

Rly = Rly ~ Ry, (8)
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where R}, is the position vector of the ath concept after recentering, R}, the
original position vecior of the ath concept, R}, the original position vector of
the concept 10 be manipulated (the “start™ concept), ¢ = 1,2, ..., %, and
#=1.2,...,r Since R,,, (by definition the magnitude or length of Rf,} now
is zero, the target vector is given by Rf,. which is represented in Fig. 6 as the
“target vector.”

‘While our understanding of the dynamics of such spaces is very rudimen-
tary. the original procedure is motivaled by a simple dynamic assumption:
When wo concepts in the space are associated (formally, when they are
linked in an assertion of the form “x is p7). they converge relative to one
another along the line segment connecting them. (This assumption is moti-
vated solely by assuming each concept will move toward the other by the
shortest path.} In Fig. 6, the sentence “the candidate is friendly” should
therefore result in a motion of the candidate concept along the vector Rf,,
‘{predicted vector) in Fig. 6. As yet. insufficient data are available to warrant
predictions of the magnitude of this motion, but its direction is clearly given
from our starling assumption. .

Based on this assumption, determination of a single optimal issue may be
stmply accomplished: First, the angle § ., hetween any predicted vector R,
and the 1arget vector R}, can be conveniently calculated as

Bioxy = c08™'[ U RN/ RipRen] )
where '
’ 1/2
Ripy = |Rnl %[gw'pr)pr) / (10)
. 172
Ry = |Rly| =[ guRER]Y (1

and where the quantities g, are given by the scalar products of the covariant
basis vectors, ie.,

B = ele! (12)

The g, can be shown to be a covariant tensor of the second rank which
defines the metric properties of the space and is therefore referred to as the
fundamental or metric tensor. If the covariant basis veclors ¢, are real and

{"Friandly} . R::. {Predicred vector}
4

s
Rm {Torge1r vecior)

{The condidate) .

a
H

Fic. 6. Hypothetical representation of 2 mulidimensional scaling space.
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orthogonal, then the 8,, take on the familiar form
1 if p=»p
= 6!“ - ?
B ¥ { 0 if p#Ep

The numerator of the parenthetical expression in (9) is the tensor notation for
the scalar product of Rf,, and Rg; this alone may be seen as the product of
the two vector lengths and the cosine of the angle between them. Dividing
through by the vector lengths [given by (10) and (11)] leaves the cosine of the
angle between them. That concept whose position vector forms the smallest
angle with the target vector will represent the concept which lies most nearly
in the direction of the “me” or ideal point. The amount of change advocated
by this message strategy is given straightforwardly by the length of the
predicted vector R, which is given by Eq. (10). 7

. Although it is common practice for psychometricians to retain only real
eigenvectors or dimensions, it is the prevailing practice of many communica-
tion researchers to perform metric analyses of ratio-scaled data averaged over
very large samples, and most frequently all or nearly all eigenvectors are
retained, including the imaginary eigenvectors (Woelfel, 1977). As we sug-
gested earlier (Section II) these imaginary eigenvectors are the result of
violations of the trangle inequalities usually found in empirical data sets.
Since these violations occur reliably and frequently, communication re-
searchers are usually unwilling to transform them away by nonmetric proce-
dures, and must, therefore, make provision for them in analytic algorithms
such as these.

- ' Where the pth through rth roots are negative (corresponding to imaginary
eigenvectors), the g,, are given by

0 if pFo,
By = 1 if pw=w»<p, (13)
—1 f p=v>p

Given these considerations, and Egs. (9)—(11), we can now solve any part of
the trangle RE R RY, in Fig. 6. If the message equating the start concept
R{, with the concept Rf,) were completely successful such that R, moved to
R,y then the distance between the start concept and target concept (after the
message) would be given by the distance

Sty = 1Rl — Rl (14)

Such an outcome is very unlikely in most cases, since we could at best
assume the point represented by R, would move only part of the distance
toward Rf,,. The point P in Fig. { represents the orthogonal projection of R
on R}, and gives the Point of closest approach to Rff,.

The length of this line segment is given by

[PRE| = Ry sin 8, (15)

where 8, is as given in (9). Similarly, the distance along R}, that the start

Gy
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concepl must travel 1o reach P is given by
PR{., = |PR,| = |PR{|/1an 8, (16)

The percentage of change advocated that must be achieved for this
message to have its maximum effect is given simply by

A% max = 100|PRE,\/ Ry {17

‘These calculations, along with an empirically measured estimate of the
proportion of advocated chanpe actually 1o be expected, provide ample daia
on the basis of which the optimal single issue may be chosen.

Multiconcept messages are very easily (and similarly} determined on the
basis of an additional assumption: Messages average like vectors in the space.
This is equivalent to the assumption that order effects (like primacy-recency)
are negligible over the life of the message campaign. Based on this assump-
tion, the position vectors or any two or more issues may simply be averaged
to yield a resuitant vector given (for two vectors) by

Ry = (Rl + Ry} /2 (18)

This resultant vector is then taken as the predicted vector and the procedures
just described are repeated.

Equation (18) can easily be generalized for n vector sums, although the
number of such combinations of possible messages grows very rapidly as »
becomes large?

Evaluation of the degree of success of the message strategy is also simply a
matter of determining the angles included between the predicted, target, and
observed vectors over the time interval As. In practice, however, it is difficult
1o hold the origin of the space at 1 + Ar precisely where it was at 1, and so it
is convenient to choose yet a different origin. In our work, we establish an
origin at the centroid of the set of concepts not incinded or implicated in any
message, and rotate the 7 and 7 + Af spaces to leasl squares best fit amonp
only those unmanipulated concepts. This procedure may be seen as an effort
1o use the unmanipulated concepts to determine a stable frame of reference
against which the relative motions of the manipulated concepls may be
gauged. Time one variables transformed into these stable coordinates will be
represented by barred tensors [e.g.. Rfyy, = I?{;,] and lime two variables will

" be represented by hats [e.g.. Rfiys = RE,) as shown in Fig. 7. (The reader
should be careful 10 note that these bars do not mean *means.” and the hats
do not mean “predicied values™ as is common in siatistical usape.) Given
these definitions we may define the predicted vector across the interval Ar ax

Rip = Ry — Efm o (19)
The target vector across Ar is deflined ay
Riy = Riy — R, (20)

*In praciice, the Galiteo™ computer program with which we work computes all possible
messages with up to four concepss o determine an “optimal message.”
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Fig. 7. Multidimensional scaling space at ¢ and ¢ + At represented on stable coordinates.

Similarly the observed motion vector is given by
Ry, = Rfy — Ry, 21)
Evaluation of the extent to which the start concept has moved as predicted is

given simply by the angle between the predicted and observed vector, which
is given by

8oy = €087 (2, REHRl/ RipyRoy) (22)

Also of interest is the extent to which the start concept has moved in the
direction of the target, which is given by

S = c0s™ (g RlyRln/ RinReo) (23)

There are further considerations. While these equations are sufficient to
indicate the basic structure of the procedures, many valuable modifications
can be derived easily by the interested reader. One such example is the
unweighted summation of vectors in multiconcept messages given by Eq. (18),
which assumes each concept to be equally effective. This assumption may be
relaxed by providing weights 8, such that (18) is replaced by

Ripy = %B(a)ﬂfa)/ %B(a) Q4

where B, are estimated empirically by the regression equation
Rigy = 2 ByRlby + € (25)

where ¢ is a least squares error term.

The equations presented here, it may be noted, are all difference equations,
reflecting the “before—after” or “treatment-control” designs typical of cur-
rent practice. Clearly the emphasis on process implicit in this paper suggests a
much heavier emphasis on longitudinal designs. When such data sets become
available, the transformation of these equations into differential form is
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straightforward, particularly when orthogonal MDS routines are chosen.
Thus the infinitesimal displacement of the start vector s, is given by

ds,, =g, dRY, dR,]'* (26)

where the dRf, represent coordinate differentials. Similarly, the instantaneous
velocity of the start vector at ¢ is given by

v, = dsy,/dl (27)
and the instantaneous acceleration of the starl concept at 1 is
a, = dsi,/dr* (28)

X. THREE-WAY MULTIDIMENSIONAL MODELS

The discussion thus far has focused on the n X » (where n = the number
of concepts) or 1wo-way multidimensional model; now attention is given 1o
the n X n X d (where d = the number of data sources) or three-way multidi-
mensional model. This section considers multidimensional analyses which
relate data sources, individuals, experimental treatments, groups, etc., to the
universe of which they are a part.

These “three-way™ models require special treatment because the relation-
ship between the spaces of individuals and an apgregate space made from
those of the individuals is not obvious. As Durkheim (1938) suggests:

Currents of opinion, with an intensity varying according to the time and place, impel
certain groups either to more marriages, for example, or 1o more svicides, or to a higher or
lower birthrate, cte, -+ - Since each of these figures contain all the individun] cases
indiseriminately, the individual circumstances which may have had a sharc in the
production of the phenomenon are pevtralized. - « - The average, then, expresses @ certain
state of group mind [italics added, p. 10].

Thus, if one is interesied in the actions of this aggregate—i.e., who it will vote
for, whether or not it will go 1o war, repress minorities, buy a product, etc..
then analyses ought 1o be performed on an averaged separation matrix.

This aggregate, however, may have properties which are different from the
properties (and attributes) of the individuals who comprise it, since. as
Durkheim makes clear. aggregation lends to obscure individual or subcultural
“points of view" Given two major “'points of view" from. for example. racists
and nonracists, aggregating the data obtained is likely to produce am-
bivalence~—a viewpoint that is neither racist nor nonracist. From a change
over time perspective. il the population or “culture™ that the aggregate
represents is initially homogeneous (i.e., characterized by a common point of
view) and messages are introduced into that culture which polarize them into
wo proups. the averaged point of view oblained may misleadingly present to
the researcher no discernible changes in that culture, The use of the average
gives limjled and sometimes misleading information regarding the conceptual
changes occurring within a collection of individuals as individuals.
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Individual Differences

One of the first individual difference MDS procedures was supplied by
Tucker and Messick (1963), and their model is known as “points of view.” In
this method, a matrix of observations with rows representing pairwise separa-
tion judgments and columns representing individuals is orthogonally decom-
posed via the Eckart and Young (1963) procedure. The resulting factor space
gives the number of “viewpoints” of those subcultures that are relatively
homogenecus with respect to the separation judgments of the concepts scaled.
A “viewpoint” is a factor (dimension) in the factor space of individuals, and a
subculture consists of those individuals with high loadings on this factor.

Presenting a different point of view about “points of view,” a2 number of
three-way metric models have been created; the most widely used of these is
Carrcll and Chang’s (1970) INDSCAL.

Carroll and Chang (1970) began the construction of their procedure by
assuming that a set of r dimensions underlying the » stimuli are common to
each data source, and while assuming commonality, they reasoned that some
data sources would use sofme dimensions for distance judgments among
stimuli, that others would not, and that some would differentially weight the
dimensions of the common space. Diffferential weighting of a dimension,
Carroll and Chang (1970) argued corresponds to the importance or salience
of that dimension for a given data source.

The result of INDSCAL is two spaces: a common space and a subject
space. The common space is quite similar to an aggregate space obtained by a
two-way procedure (with the exception of possible nonorthogonal dimensions
and the orientation of the dimensions). The subject space yields coordinate
values for each data source which represents their weights on the dimensions
of the common space. For each data source, the correlation between the
reconstructed separation derived from the “private” space and the original
separations is used as a goodness-of-fit measure. For the solution as a whole,
the average of these correlations is used.

The INDSCAL solution, however, has some disadvantages. As is typical of
psychometric practice, the centrality of the individual is paramount, and
INDSCAL implies a set of different spaces, each one of which has an
individual at the centroid from which originate a set of (generally oblique)
attribute lines of wvarying length. Differential weighting of attributes
1s given by differential stretching and shrinking of these attribute lines. What
INDSCAL cannot account for, however, are order inversions of concepts
across data sources. Consider two hypothetical people who conceive of three
concepts that are aligned differently on the same attribute. Person 1 conceives
the separations shown in Fig. 8a, and person 2 conceives the separations
shown in Fig. 8b. A metric analysis for person yields the unidimensional
space shown in Fig. 8c, and a metric analysis for person 2 yields the
unidimensional space shown in Fig. 8d. However, averaging the separations
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for these two individuals. and then analyzing the average S matrix does not
yield a unidimensional space, as is illustrated in Fig. 8e.

Dimension I of the aggregate space does bear resemblance to the original
attribute; however. an additional dimension emerges. In this space, note that
no pattern of stretching or shrinking axes can account for this order inversion
without the additional dimension. Why this is so can be shown by relaxing
the requirement that each space be “subject centered™ so that the differem
data sources may be free 1o locate at different points in the space as shown in
Fig. 9. .

Figure 9 shows two observers. x and y. situated among three stimuli. A. B,
and C. From the viewpoint of x, these are arrayed along the continuum A4, in
the order 4, B. C. But to observer y. they appear 1o be arrayed along the 4,
continuum in the order 4. C. B. This can only be the case if 4, B and C are
no! collinear in the joint space,

Marlier (1976) offers a solution 1o the “ordinal inversion™ problem: the
essence of Marlier's approach is the assumption that the apgregate space or
eultural perception is “logically prior™ 1o the individual viewpoint, and that
individual perceptions (distortions) of the cultural “true” space are accounted
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¥i16. 9. Three objects A, B, C (boldface) appear in the order 4, B, C to the observer at x,
but in the order 4, C, B to the observer at y. For the observer at x, A, B, C represent the
unidimensional continuum A, ; for the observer at y, 4, C, B represent the unidimensional
continuum 4,. The joint space, however, is two dimensional.

for by different locations of individuals in the space, much like the view of
Tucker and Messick (1963). Given this assumption, Marlier’s approach is
simple: First, a set of individuals make separation judgments among the n
concepts, one of which is “ego.” Second all pairwise separation judgments
among the n — 1 concepts exclusive of “ego™ are averaged into an aggregate
matrix S, which is (n — D) X (n — D). Then m additional matrices
8, 8y ..., S, are constructed by augmenting § by adding the row and
column of estimates of each individual’s separation of each concept to him or
herself. These m matrices are then orthogonally decomposed into multidimen-
sional spaces and then rotated using the unequally weighted rotation proce-
dure described earlier. Weights of zero (0) are assigned to the “egos™ and
weights of one (1) are assigned to the common, aggregate concepts. The result
is one space which portrays the aggregate common concepts along with the
individual “points of view”—points which represent the view of each data
source (ego). The result is an analytic paradigm which produces an aggregate
space in conjunction with potentially differing “points of view.”

XI1. APPLICATIONS

The MDS procedure may be applied in any situation where a set of objects
may be described in terms of the dissimilarities among the members of the
set. Any such set may be described by means of some kind of spatial
representation, and the number of communication applications which fit this
model is quite large. Whenever the reliability of the measures of dissimilarity
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is high (i.e.. random error of measure is small), metric MDS is the appropriale
procedure.

Nonmetric procedures may be called for when two conditions are fulfilled:
(1) The data are relatively unreliable. ie., the random component in the
measurements is large, and (2) the configuration of the points is known a
priori to be Euclidean, that is, the configuraiion of the domain meets the
criteria of additivity, associalivity, and triangle inequalities in Section III.
This is so because all nonmetric procedures consider any failure of these
axioms among the measured values (data) to be solely the result of error of
measure. and iteratively and monotonically transformn the measured values
until they meet the metric axioms as closely as possible. {Differences in the
actual monotonic transforming algorithm and differences in the operational
definition of “as closely as possible™ distinguish the various nonmetric proce-
dures from each other.) If either of these conditions is not fulfilled, nonmetric
procedures will introduce rather than remove error from the resulting config-
uration. On the other hand, while the metric procedure does nol constrain the
data 1o fit the metric axioms, they will yield a metric outcome if the
(measured) data themselves fit those axioms. Put yel another way, nonmetric
scaling places low confidence in the original measures and, therefore, forces
the solution to fit the metric axioms; metric scaling places high confidence in
the metric of the original measures and, therefore, does not constrain the
solution to fit the metric axioms,

The metric MDS procedure i1s appropriately used, therefore, whenever the
domain of inguiry can be expressed as a relatively reliable matrix of dissimi-
larities among a set of objects. There are several general classes of problems
within the field of communication which meet this model quite well. The
intercities distance matrix of Table 1 is an ideal type of a class of such data
where the cities are examples of any node in general (in this case focations)
and the distances are examples of some physical measure like distance.
Network-type problems {see Farace and Mabee, Chapter 12 of this volume})
are a special case of this type, particularly when interaction rates are
measured in real (clock) uime. Frequencies of interaction can often be
measured with high reliability, and there is no reason currently in the
literature why the spatial structure of communication networks should be
expecled to meet the metric axioms (i.e., 10 constitute a real Euclidean space).

Another generic type of communication domain for which metric MDS can
be an effective tool is the domain of cognitive and cultural structures and
processes. Cultural or cogniuve domains have ofien been described as seis of
objects (concepts, ideas, attributes, elc.) among which people discriminate, A
cultural domain which has been investigated carefully in communication is
the domain of voting. where the set of objects consists of issues within which
are arrayed both candidates and voters (Serotu er af., 1977). Linguistics and
language behavior constitutes another example in which the domain may be
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described as a set of symbols which differ in meaning among each other.
Once again, estimates of the perceived differences among psychological or
cultural objects can frequently be made with good precision, particularly in
"the case of cultural differences, which can be averaged over a large number of
cases. And there is little theoretical basis for the assumption that the structure
of cognitive or cultural elements should be Euclidean—in fact most current
theory would probably oppose the rationality implicit in such a model.

Special cases of such cultural domains include markets and market seg-
ments, where products, services, candidates, etc., may be arrayed among
attributes, issues, and other relevant cultural objects. Metric MDS has found
important applications in both business and marketing.

Because of the availability of the rotation algorithm for least squares
matching of spaces, metric MDS has found important comparative applica-
tions within all these domains. Quantitative measures of the similarity of
multiple communication networks, for example, are straightforward, aand
comparisons of subcultures (e.g., male—female, black—white) or cultures are
similarly made by means of the least squares rotation algorithm. Metric MDS
has thus found important applications in cross-cultural communications,

Since the same procedures apply as well to multiple times of measure (as
well as cross-group comparison) metric MDS has been used extensively for
longitudinal or kinematic studies. Thus changes in communication networks,
cultural beliefs, market opinions, and so on, have been extensively analyzed
by metric MDS procedures. Whenever ongoing processes are interrupted or
modified by some treatment (such as television viewing, or political debates,
“etc.), effects may be observed by means of metric MDS, and several such
studies have been done (Stoyanoff; Barnett). Since processes are central to
communication, the range of application is very wide.

When hypotheses about motion are added to process or kinematic MDS
studies, dynamic models emerge, and such models have engineering applica-
tions in both prediction of future states or processes (like elections, cuitural
changes, changes in structure of communication networks) and active inter-
vention in those processes. Thus the message generation model described in
Section VIII has found useful application in marketing and political
campaigning as well as in theoretical studies of the dynamics of cuitural
change (Cody, 1977) and attitude formation (Gillham & Woelfel, 1977).
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