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I. INTRODUCTION 

All measurement systems. whatever their type. share as a basic goal the 
determination of difference or separation among the elements measured. The 
crudest measurement systems are able to detect only the presence or absence 
of gross differences, while the most sensitive and precise measurement sys­
tems can reliably detect the smallest of differences and relate their magnitude 
to any other such difference as ratios. All measurement systems jn practice lie 
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along a continuum between these extreme points. These differences or separa­
tions among the elements scaled may be thought of as distances, and 
multidimensional scaling (MDS) capitalizes fully on the analogy to spatial 
distances implicit in the measurement model. MDS procedures construct a 
multidimensional space or map in which the objects scaled are arrayed such 
that the distances between any two objects in the map are functions of their 

'- measured distance from each other on the scaling instrument. To the extent 
that the measurement system used by the researcher yields outcomes toward 
the precise end of the measurement continuum, this spatial analogy becomes 
increasingly appropriate. 

Although several variations of this analysis system exist (Carroll & Chang, 
1970; Coombs, 1958; Harshman, 1972; Kruskal, 1964a, b; Lingoes, 1972; 
McGee, 1968; Pieszko, 1970; Shepard, 1962a, b; Torgerson, 1952, 1958; 
Tucker & Messick, 1963; Tucker, 1972), all share the central notion of a 
spatial coordinate system as a frame of reference within which symbols are 
arrayed and therefore "pictured." Insofar as they constitute projections of 
distances among points into a coordinate system, MDS procedures provide 
the closest analogy to mechanics in the social sciences. 

The many variants of multidimensional scaling may be broadly classified 
as either Hmetric" or ~~nonmetric"; since Norton (in this volume) presents a 
chapter (Chapter 10) on one variant of nonmetric multidimensional scaling 
(smallest space analysis), no further elaborations will be made here. 

II. METRIC MULTIDIMENSIONAL SCALING: 
THE CLASSICAL MODEL 

The metric multidimensional scaling model was the first multidimensional 
scaling model developed and it is known as the "classical" approach. Follow­
ing Young and Householder (1938) and Richardson (1938), among others, 
Torgerson (1952, 1958) is most well known for general improvements and 
dissemination of this approach. Unlike the nonmetric approach, the metric 
procedure begins with a precisely scaled n X n data matrix S (see Table I) 
and concludes with an identically precise multidimensional space. Any cell sij 

in this matrix represents the measured dissimilarity or difference between the 
ith and}th object or concept scaled. In a typical metric study as usually 
practiced in the communication field, two of the objects to be scaled are 
chosen as a "criterion pair" and the difference between them assigned a 
numerical value like 10 or 100. All other pairs are then compared as ratios to 
this criterion pair in a statement of the form: "If a and bare u units apart, 
how far apart are ... and ... ?" When there is more than one respondent, 
estimates of all samples responses are usually averaged within each cell sij 

across all sample members to yield the average dissimilarities matrix s 
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(Gillham & Woelfel, 1977). The matrix of intercity distances in Table 1 is an 
ideal type of such a matrix. 

Though its foundation can be traced back to the Greeks and beyond 
(Serota, 1974). the modern basis for metric multidimensional scaling was laid 
in 1938 when Young and Householder (1938) presented a technique for 
describing the location of points in a spatial configuration given only the 
separations (distances) among the points. Young and Householder (1938) 
converted the matrix of interpoinl separations S into a matrix of scalar 
products B. whose elements bi) are defined as 

b '( , , ') ij =3 s;p+SjP-SU (I) 

where the point P is an arbitrary point in the space and is used as the origin 
of the space.' Although there is a unique B matrix for each point selected as 
the origin of the space. the separation relations among the points in the space 
remain invariant regardless of which point is selected as the origin. 

Torgerson (1958) describes a procedure for locating the origin at the 
centroid of the space. The centroid is the exact center of the configuration of 
points, and Torgerson's procedure simply ensures that the resulting map or 
plot will be centered on the page. While functionally equivalent to the Young 
and Househo1der solution, Torgerson's procedure is more commonly used. 
A:ny element bOy in Torgerson's (1958) "doubled centered" scalar products 
matrix is given by 

where 

. b',ii = .!(s~ - s2 - S2 +S2) 
" 2 y J i. .. 

I n 2 
- L su' n ;_1 

Inn 

S' = - "" "" S'. .. 2 ..:::., ..:::., V 
n i_lj_1 

(2) 

That is, placing the origin of the space at the centroid (geometric center) of 
the .space is accomplished by subtracting out the grand row and grand 
column means leaving only (in analysis of variance tenns) the "interactions." 
Geometrically, any b*ij element represents 

b* ij = cos BijlRiliRil (3) 

where cos (Jij is the cosine of the angle between the two vectors. IRil the 
vector length of point i from the origin (centroid). and IRjl the vector length 
of pointj from the origin (centroid). 

Once the B* scalar products matrix is obtained. establishing the coordinate 
system is fairly straight forward: it simply consists of a factorization of the B* 
matrix. This factorization is identical to the factor analysis algorithm famiHar 
to most communication researchers-the only difference is that the B* 
matrix is input instead of the usual correlation matrix. It consists essentiaJJy 

ITbc notation B. band BO, and bO are taken from Torgerson (1958). 
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of finding the eigenvectors of the S- matrix. The output of this analysis will 
be a k X r matrix R{p. = 1, r; a = 1. k) where each row Rt:.) represents the 
projections of the ath concept or object (city. in the example of Table I) on a 
set of r orthogonal basis vectors ',' The fact that there is a single index (p.) 
shows it is a vector (no index would represent a scalar: two indices would 
represent a matrix. and so on). The (a) is placed within parentheses to show 
that it is not an index. but rather only a marker to describe which vector we 
are referring to. Furthermore, the index is superscripted to show that this 
vector refers to observations or measured values. (Superscripted quantities are 
called "contravariantUj subscripted quantities are called "covariant." RI'". 
therefore, is a contravariant veclor.) 

Similarly. each of the ep' represents a unit vector (the single index shows 
that it is a vector). and the fact that it is subscripted rather than superscripted 
indicates that each ep does not refer to observations of measured values but 
rather to an arbitrary reference vector onto which the measured or observed 
values (Rt,» are projected. Since it does nol refer to measured values. it is a 
covariant vector and hence subscripted. 

Each of these ep' (I-l = 1. r) vectors represents a unit reference axis orthogo­
nal to each other such reference axis. and thus the set of these basis vectors 
constitutes an ordinary r-dimensional Cartesian coordinate system. These 
vectors are usually called dimensions (sometimes factors or eigenvectors) and 
the fact that more than one such vector is usually needed to represent the 
configuration gives rise to the term ~'multidimensional scaling." In fact. it is 
always the case that r .( k - 1. since any k points can always be represented 
on k - 1 orthogonal coordinates. Any three points, for example. can always 
be fit on a (two-dimensional) plane, but may in some cases be on a 
(one-dimensional) line. Factoring the centroid scalar products matrix (S-) 
derived from the intercity distance matrix in Table I yields the results given in 
Table II and Fig. I. Each column of Table II represents the projections of the 
cities on a reference vector eJL; the first column. therefore. represents the 
projections of the cities on the first unit vector e]. the second. their projec­
tions on e2• and so on. The reader can easily verify that these columns are 
orthogonal by calculating the correlations among pairs of columns. all of 
which will be 0.0. 

Each row of Table II represents the projection of one of the cities' position 
vector Rt.) on the ep' basis vectors. thus the first row RIll represents 
the projection of Atlanta~s position vector on the space. so that Rell) == 
- 808.7 R(~) = 481.3. elC. Moreover. since the transformation hy which this 
solution is achieved is distance preserving. these numbers are to be under­
stood in the original units of measure-in this case kilometers. Plots based on 
the first two dimensions (columns "1 and {'2) of Table II are presented in Fig. 
I. Actually. the figures in Table II have first heen reflected (multiplied hy 
- 1) because the algorithm generated an inverted mirror-image of our con­
ventional representation of the earth's surface-the algorithm. of course. 
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TABLE II 

GALILEO COORDINATES OF 16 SELECTED anES IN A METRIC MULTIDIMENSIONAL SPACE NORMAL SoLUTION 

(1) Atlanta 
(2) Boston 
(3) Chicago 
(4) Cleveland 
(5) Dallas 
(6) Denver 
(7) Detroit 
(8) Los Angeles 
(9) Miami 

(10) New Orleans 
(II) New York 
(12) Phoenix 
(13) Pittsburgh 
(14) San Francisco 
(15) Seattle 
(16) Washington 

-808.701 
-1677.183 
-406.610 
- 891.643 

322.591 
1042.064 

-767.895 
2268.293 

-1326.834 
-329.342 

-1517.500 
1733.251 

- 1053.005 
2529.978 
2240.414 

-1357.579 

Eigenvalues (foots) of eigenvector matrix 

2 

481.329 
-745.227 
-363.631 
-403.765 

699.325 
-82.214 

-473.812 
367.182 

1253.670 
866.871 

-480.943 
54I.l57 

-319.613 
-119.627 

- 1172.344 
-148.357 

3 

-26.846 
-184.542 

110.592 
54.297 
42.781 

156.341 
73.193 
18.883 

-256.774 
-51.591 
-5I.l55 

52.360 
2I.l58 
33.792 

-272.454 
279.964 

4 

-71.783 
85.696 

- 119.280 
-32.279 

-152.488 
- 114.150 
-66.076 
128.831 
102.060 

-92.584 
79.323 

-4.181 
-29.486 
190.582 

-88.105 
183.919 

5 

16.023 
- 10.499 

- .893 
33.483 

-54.108 
- 11.267 
-13.045 

86.748 
-11.724 

21.478 
-22.697 
-17.993 
-5.232 

-54.348 
.814 

-8.741 

6 

16.599 
-27.056 
-7.731 
27.932 
25.889 

-23.404 
4.508 

-3.487 
.826 

-16.044 
9.141 

-27.342 
3.694 

25.969 
- .161 
-9.436 

7 

12.634 
-13.778 
-19.989 
-8.801 

-16.486 
23.232 

1.460 
.092 

5.017 
-5.036 

5.351 
-6.725 
28.170 

.114 

.044 
-5.304 

8 

10.807 
-8.615 
15.535 

-6.017 
-8.547 
-7.455 

-23.434 
-2.216 

- 10.785 
9.862 

23.699 
5.051 
2.261 
2.814 

.055 
-3.014 

32900982.656 6480979.446 310095.395 189689.444 2265I.l53 4969.506 2586.446 1974.062 

Number of iterations to derive the root 
4 4 

Percentage of distance accounted for by individual vector 
82.428 16.237 

Cumulative percentages of real distance accounted for 
82.428 98.665 

24 4 

.777 .474 

99.441 99.915 

Cumulative percentages of total (real and imaginary) distance accounted for 

44 7 9 13 

.057 .012 .006 .005 

99.972 99.984 99.991 99.996 

83.086 99.453 100.236 100.714 100.771 100.783 100.790 100.795 

Trace 39598514.222 
Number of dimensions in real space 9 
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FIG. 1. Plot of factors I and 2 from tlIe unstandardizcd analysis. 
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cannot know which half of the world we like to consider the "top." Given this 
reflection. Ri" = 808.7 and RI~' = - 481.3 tell us that Atlanta is 808.7 km 
east and 481.3 km south of the geographic center of these 16 cities. 

I! is worth noting also that two dimensions are enough to give a reasonably 
complete representation of these data. The third dimension (not ploUed) 
represents the (minor) curvature of the earth; all the others represent round­
ing errors (the original data are not perfectly error-free), The determination of 
how many dimensions to relain is based solely on the relative sizes of the 
projections on the dimensions. When the projections are too sman to be 
worth considering. or are within the precision of measure. they are ignored. 
As an aid in determining when they are Utao small." we note that the squares 
of the projections on each factor sum to their corresponding eigenvalue, A(p). 

(Note that I' is in parentheses. indicating that it is not an index; since Atp, has 
no index it is a scalar.) That is. 

(4) 
.,-1 

This value. A( foL)" may be thought of in ANOV A termS as the amount of 
variance explained by the JLth dimension. The total variance is called the trace 
(T) and is given by the sum of the eigenvalues. i.e .. T = !~-I'\f')' The 
proportion of variance explained by any single factor. therefore. is given by 
its eigenvalue divided by the trace. or 

%VAR = lOOAlpl/T (5) 

Statistical tests for the significance of this ratio are not known in the MDS 
literature butlhe reader is referred to Barnell and Woelfel (1978) for a more 



340 JOSEPH WOELFEL AND JEFFREY E. DANES 

thorough discussion of the question of dimensionality. These authors con­
clude that valuable information can be found in factors much smaller than 
typical practice usually retains, and they recommend retaining all or nearly 
all the dimensions, particularly when precise scaling procedures and large 
samples have been employed. (Most typical procedures now in use would 
ignore the small third dimension in this example and thus conclude that the 
world-or at least the United States-is flat.) 

III. METRIC RATIOS, METRIC AXIOMS, AND "METRIC" SPACES 

In the process of "measuring," the term metric usually refers to the initial 
standard for which other numerical values of separation are obtained by 
comparing these other magnitudes to the initial standard. As such, physical 
distances are metric ratios, proportions, or multiples of a consensually shared, 
prespecified distance: the meter. In the language of mathematics, however, 
the term "metric space" usually refers to a space which is isomorphic with 
certain prespecified axioms; for the metric Euclidean space, these axioms take 
the following form (cf. Blumenthal, 1961) 

sij = 0 if and ouly if i = j (positivity) 

sij = Sji (Symmetry) (6) 

for all i,j, and k (Triangle inequality) 

With the presence of positivity and symmetry, all that is needed to make the 
space "metric" is the requirement that any triangle formed by any three 
points be real; that is, that any side of a triangle not exceed the sum of the 
other two sides. These constraints are clearly met by the intercity distance of 
Table I. In communication research, however, the triangle inequality rule is 
usually violated by the original data set. Thus, when one is working with 
reliable metri'; ratios provided by human respondents, metric MDS fre­
quently results in complex, non-Euclidean multidimensional spaces char­
acterized by both real and imaginary eigenvectors in R. 

The term "imaginary" has caused unfortunate misgivings among psycholo­
gists; some psychometricians have assumed that imaginary eigenvectors 
cannot be meaningful and, therefore, represent measurement error. Thus, if A 
is "close" to B, and B is "close" to C, the failure to find the logically expected 
"nearness" between A and C has usually been attributed to faulty data 

. gathering procedures. Beginning with Shepard (I962a, b), Kruskal (1964 a, b), 
Guttman (1968), Lingoes (1972), and others have devised "nonmetric" proce­
dures which eliminate triangle inequality violations by iteratively transform­
ing data into a "metric space" of a prespecified number of dimensions. 

Research by Danes and Woelfel (1975), Serota, Cody, Barnett, and Taylor 
(1975), and Woelfel (1977), among others, indicates, however, that respon­
dents frequently and reliably report "inconsistent" separation judgments. 
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Collectively. these studies suggest that "inconsistent" separation judgments 
result from the differential interpretation of a given concept: that is. the 
meaning for a given symbol frequently varies with the context in which the 
symbol is presented. For example. ·'red" and "orange" may be conceived of 
as similar; "orange" and "tangerine" may be conceived of as similar;, but 
"red" and "tangerine" may be viewed as very dissimilar. If such an example 
were quantified with metric ratio data. this would result in "inconsistent" 
separation and result in a complex multidimensional "metric" ratio space. In 
general. the spaces yielded by typical communication separation matrices are 
multidimensional and complex. 

IV. STRUCTURE OF MULTIDIMENSIONAL SPACES: CLUSTERS 
AND ATTRIBUTES 

Multidimensional scaling was conceived of primarily by psychologists to 
measure psychological structures, and early analyses usually were confined to 
efforts at identifying different characteristics that might be associated with 
different regions of the space. Five procedures for such analyses are most 
common. First is a simple ·'eyeball" approach, similar to the intuitive inter­
pretation of factor analyses, where the investigators carefully scrutinize the 
plots of the configuration to determine obvious features. Very frequently the 
graphic simplicity of the multidimensional plot (e.g .. Fig. I) makes obvious 
facts concealed both by the separation matrix and other analytic procedures. 

Second, many researchers frequently perfonn cluster analyses on either the 
separation matrix or the coordinate matrix R to identify meaningful clusters 
of elements. Those elements which cluster together are usually thought to 
possess some common characteristic(s). Interpretation of these analyses give 
precision to "eyebaU" analyses. and the reader is referred to Chapter 9 for an 
explication of such procedures. 

A third common analysis consists of attempts to locate linear arrays of 
"objects" which might express fundamental psychological attributes. If all the 
concepts in a space, for example. could be seen to lie on a line from ·'bad" to 
"good." a "good-bad" attribute might be inferred. Many early analysts. in 
fact. hoped or assumed that these attribute!; might correspond to eigenvectors 
or dimensions themselves. since they fell the basic attrihutes of experience 
would prove to be independent of each other. but few workers still' hold to 
this view today (Rosenberg & Sedlak. 1972: Cody. Marlier. & Woelfel. 1976: 
Schmidt. 1972). 

Very substantial evidence suggests rather that the Qrthogonal factors of the 
MDS space should be thought of only a!' a convenient reference frame (much 
like the numbered and lettered grids on street maps). Attribute lines may well 
take any orientation within this grid. and frequently the number of attributes 
iound greatly exceed the number of eigenvectors. 
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This suggests a fourth common procedure for analysis of the structure of 
an MDS space. Locating such attribute vectors in the space can be accom­
plished very simply by capitalizing on the orthogonality constraints on the 
eigenvectors to yield the regression equation (see Gillham & Woelfel, 1977): 

(7) 

where A are the measured scores of the concepts scaled on any attribute 
scale, B(O the standardized regression coefficients representing the cosines of 
the angies between the attribute vector A and the orthogonal R(.) (due to the 
orthogonality constraint, the Bi are equal to the zero order correlations 'AR')' 
and R(.) the eigenvectors (factors, axes, dimensions) of the solution. Even th'is 
procedure contains important flaws however. Among these are the assump­
tions implicit in (7) that each attribute or trait is equally salient or relevant for 
every element of the domain and that each trait is of infinite or at least 
indefinite length (Cody el al., 1976; Cody, 1976). 

Fortunately, a fifth procedure which overcomes these and other problems 
requires simply that the words which describe traits (e.g.,. friendly, warm, 
sharp, unobtrusive, etc.) be included as concepts in the original separation 
judgments. Line segments between semantic "opposites" (e.g., good-bad) can 
be taken as finite attributes whose position and orientation vis-a.-vis the other 
concepts in the domain are completely given by the scaling solution itself. 
Except for the difficulties due to respOJ:ident burden and other economic 
factors which occur when k (the number of concepts scaled) becomes large, 
this approach seems to be free of the problems inherent in the other methods. 
This procedure does not require that any empirical parameters be constrained 
in advance, but rather determines the number, length, and orientation of 
attributes by measurements. 

V. THE COMPARISON OF MULTIDIMENSIONAL SPACES 

As interesting and informative as these techniques are, by far the most 
interesting use of multidimensional scaling is for the comparisons of spaces 
across groups and across time, since these transformations provide the basis 
for projections of future events, causal analyses, and ultimately engineering 
applications. 

Since the axes in a multidimensional space have an arbitrary orientation, 
some scheme of rotation and translation is necessary to "match" the spaces as 
closely as possible before such comparisons are undertaken. The transforma­
tion required is one which will minimize the discrepancy between spaces 
while leaving the measured distances within each space invariant. These 
transformations (frequently called "Procrustes" rotations to distinguish them 
from the analytic rotations-like "varimax" or quartimax" -common in 
factor analysis) are of great theoretical significance, since they establish a 
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common frame of reference acrosS respondents. observers. and time periods. 
Alternative choices of such transfonnations will result in different reference 
frames which will determine the fonn of regularities observed (Woelfel. 1977). 
In its most general form. this problem was solved independently by Cliff 
(1966) and Schonemann (1966). The general solution involves rotating a 
matrix of coordinates RI'r., at ( + 1 about its center until the sum of the 
squared distances of each point in Rt:.) at , + 1 from its counterpart in 
another space R/'a, at I is at a minimum. This transformation conserves 
position in that it minimizes total motion when I and I + ] refer to times of 
measurement, or total difference if ( and { + I refer to any arbitrary groups. 
Whenever two or more scaling solutions-or even factor analyses-are to be 
compared. Procrustes'fotation is required; rotating all the spaces to a criterion 
like varimax or any other analytic solution will not minimize artifactual 
differences. 

Under many circumstances it is desirable to weight these rotations. In an 
experiment. for example, in which some concepts are manipulated and others 
controlled, one would try to conserve the position of the unmanipulated 
concepts. but would expect the manipulated ·concepts to move freely. Under 
these conditions. the control concepts should be assigned unity weights and 
the manipulated concepts should be assigned zeros. Under more complicated 
conditions-such as those in which concepts were known to be measured 
with differential reliability-continuous variable weights may be assigned. 
The key function of these weights is to· assign differential stability to the 
points across the rotations. 

Coupled with the idea of rotation is the notion of translation. Translation 
means parallel displacement of the space. or relocation of the origin of the 
space. Translations represent changes in viewpoint in the space and are of 
great theoretical significance. It can easily be shown that distances within 
each data set remain invariant under both rotation and translation. Solutions 
to be weighted rotation problem. including translation to different origin. are 
presented in Woelfel el al .• (1979). While the Woelfel el al. solution is an 
iterative solution. it includes translation and is defined Over complex coordi­
nates as well as real. A direct. noniterative solution to the weighted Procrustes 
problem is presented by Lissitz. Schonemann. and Lingoes (1977). but the 
Lissitz solution does not include translation of origin and is defined only for 
real coordinates. . 

VI. COMPARISON OF SPACES: AN EQUALLY WEIGHTED LEAST 
SQUARES EXAMPLE 

For the crossMsectionai comparison of nine groups of subjects when com­
paring the identical concepts and using different criterion pairs (anchors) and 
different initial metrics (separations). Gordon (1976) used the rotation proce­
dure given above with each concept given an equal weight. 
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The intent of Gordon's (1976) study was to evaluate whether the ratio 
judgements of separation scaling model (i.e., scales of the form: "if a and b 
are p. units apart, how far apart are x and y?; Danes and Woelfel, 1975) 
would yield equivalent solutions when subjects used different criterion pairs 
with different initial separation values. Four groups were given the larger 
criterion pair "children's comedy-crime drama" (CC) with an initial separa­
tion value of either 10,25,50, or 100 units; four groups were given the smaller 
criterion pair "family drama-medical drama" (FM) with an initial separation 
value of either 10, 25, 50, or 100 units. The ninth group who rated the 
identical concepts was instructed to " ... keep a ten point scale·in mind-
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some concepts may be less than ten units apart and others may be more 
[po 9]." Group sample size ranged from 92 to 112; a total of 863 subjects 
participated in their study. Each group rated the separations among the 
following I3 concepts: 

J. Children's comedy 2. Adult situation comedy 
. 3. Soap opera 4. Family drama 

5. Medical drama 6. Crime drama 
7. Fat Albert 8. All in the Family 
9. General Hospital 10. The Walton, 

II. Medical Center 12. The Streets of San Francisco 
13. Me 

On the basis of trace size. i.e .. the total variance of each space. the nine 
matrices were rank ordered from the low 238.98 [0 high 45.100.99: the 
following order was obtained: CCIO. None. FM 10. eC25. FM25. FM50. 
CCIOO. and FM 100. These results confirmed Gordon's (1976) expectations: 
(1) that the smaller the separation between the criterion pair. the larger the 
space (CC > FM). and (2) that the larger the numerical ,eparation metric. 
the smaller the space. Leaving the "none" treatment out. multidimensional 
spaces were then computed and rotated to least squares congruence~ the piot 
of these eight spaces appears in Fig. 2. The plot of the three principle planes 
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appears in Fig. 3, the plot of the "none" and the CCIO group appears in Fig. 
4. 

Aside from the rotation illustration, the Gordon (1976) study illustrated 
two basic findings important for the ratio judgment of separation measure­
ment procedure: (I) apparently subjects do perceive differential magnitudes 
of initial metric separations; that is, larger spaces were obtained when the 
criterion pair was smaller although the number assigned to that criterion pair 

. remained the same; (2) although the spatial structure obtained from the 
"none" treatment was similar to the spatial stucture obtained from the CCIO 
treatment, the variance for the "none" group was almost three times as large 
as that obtained from the CCIO treatment group, a finding which indicates 
that the use of a criterion pair reduces the potential amount of "noise" in 
separation judgments as well as supplying a basic metric for the space. 

xy 

13 

8 xz 

9 

yz 

FIG. 3. Comparison of treatments. Beginning at concept number. each point represents 
the judgment of that concept using a different criterion pair. The order of treatments from 
outer to inner is: FMlOO. CClOO, FM50, CC50, FM25. ee2S, FMlO, CClO ("none" 
treatment not included, see Fig. 4). 
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For the study 42 subjects estimated the separation among concepts using 
the same ratio judgments procedure used in the Gordon (1976) study: the 
concepts mapped were 

I. Sleeping 
3. Daydreaming 
5. Marijuana high 
7. Depression 
9. Relaxation 

II. Alpha wave mediation 
13. Reliable 
15. Message Source A 

2. Dreaming 
4. Intense concentration 
6. Good 
8. Alcohol high 

10. CTr 
12. Transcendental meditation 
14. Messagc Source B 
16. Mc 

Two days after the first (to) measurements were made. the subjects in this 
study received a letter from a well-known credible source (Source A). who 
advocated frequent daily practice of CTP. a deliberately undefined fictitious 
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psychological activity-the "cortical thematic pause." After reading the letter 
from Source A, the subjects were then asked to estimate the concept relations 
again (t,). Five days later a similar letter from a less credible source (Source 
B), who also advocated frequent CfP practice was delivered and the concepts 
scaled once again (I'). FinaJly, a fourth (13) wave of data was collected two 
days later. It was expected that (1) two concepts CfP and Source A should 
converge after the reception of the first message, and that (2) the three 
concepts CTP, Source A, and Source B should converge after the reception of 
the second message .. Those concepts not mentioned in either letter were 
expected to remain invariant. 

Using separation matrices that consisted of averaged values for each 
measurement session, the second space was rotated to the first and in doing 
so, CfP and Source A were given weights of zero while the remaining 
concepts were assigned weights of unity. Further, the third space was rotated 
to the second and in doing so, CfP, Source A, and Source B were assigned 
weights of zero while the remaining concepts were again assigned unity 
values. Last, the fourth space was rotated in the same way to the third (see 
Fig. 5 and Table III). As Fig. 5 shows, at the 12 measurement there is a triple 
convergence of Source A (15), the CfP (10), and the Me (16). At the 13 
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FIG. 5. Stable concepts rotation. 
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TABLE III 
MEAN CHANGe SEPARATION VALUE (MonON) AS A FUNcnON OF AN 

UNEQUALLY WEIGHTED LEAST SQUARES CoNCEPT-CoNCEPT ROTATION 

Concept 10 - 11 11 - '2 12 - t) 

(I) Sleeping 20.923 15.752 19.067 
(2) Dreaming 14.539 18.902 19.285 
(3) Daydreaming 22.033 12.331 17.785 
(4) Intense concentration 20.110 11.4<i2 14.972 
(5) Marijuana high 21.858 24.396 16.136 
(6) Good 30.317 23.736 13.200 
(7) Depression 20.354 16.093 12.331 
(8) Alcohol high 25.877 11.497 14.937 
(9) Relaxation 31.861 16.341 26.,56 

(10) CfP 56.868" 67.708" 36.790" 
(lJ) Alpha wave meditation 18.728 25.431 12.237 
(12) Transcendental meditation 19.175 15.446 16.713 
(13) Rl:liable 22.446 21.220 27.047 
(14) Message Source B 27.933 71.548" 37.551'" 
{lS} Message Source A 124.533" 74.952~ 43.308" 
(16) Me 24.766 25.259 23.889 

"Denotes the concepts thai were set to weights of zero: i.e., m; - O. 
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measure. there is a convergence of Source B (14). Source A (15). and the CTP 
(10). but a divergence (boomerang effecl) of the Me (16). At time four. after 
no new manipulations. little interpretable motion is evident. (fable II I 
reflects the magniludes of these motions.) NOle especially the small random 
motion (like Brownian motion) of the unmanipulated concepts. Although 
substantive interpretations of this experiment are beyond the scope of this 
chapter the main point is to. show how the stable concepts rotation procedure 
can aid in the interpretation of multidimensional experiments. 

VIlI. MESSAGE DESIGN SYSTEMS 

Among theoretical and applied communication specialists. it is commonly 
agreed that linking one's message topic with the appropriate message appeal!> 
increases the effectiveness of one's communications: but what are the ·'ap­
propriate" message appeals? This section 'of this chapter presents a new 
analytic development for the design of optimum message strategies: that is, 
within a multidimensional analysis framework. the topic of discussion now 
turns to procedures designed specifically for the selection of the ··best" 
message appeals for the design of messag£> contem. 

Ego as a Coneept 

In the exampie given earlier. the concept ··ego" (me. myself. my vote. my 
position. my purchase. my support. etc.) was mapped inlo the space as were 
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the other concepts of concern. Within the multidimensional analysis frame­
work, the concept "ego" and other such similar concepts appears to have 
special properties vis-it-vis behavior. In a political mass communication study, 
for example,· Barnett, Serota, and Taylor (1975) have found the political 
candidate-ego separation to be inversely related to voting behavior; that is, 
that candidate which was nearest to "ego" received the largest share of the 
vote in a congressional election. Furthermore, earlier research by market 
researchers (e.g., Green & Carmone, 1972; Steffier, 1972) has found products 
nearest to the ego (e.g., my'purchase or my choice) yield greater sales than 
those that are distant from the ego. Additionally, Jones and Young (1972) 
have found the separation between graduate students and graduate faculty to 
be predictive of communication frequency, as indicated by the formation of 
graduate committees. 

A reanalysis of the data collected by Danes and Woelfel (1975) revealed a 
strong association between ego-concept separations and evaluation (r = .93) 
such that those concepts nearest to ego were rated the most favorable. 
However, Green, Maheshwari, and Rao (1969) did not find support for an 
ego-concept evaluation association. A casual reading of their work suggests 
that the lack of an association between preferences and the ego-concept 
separations may be due to the notion that many of the products scaled were 
out of economic reach; thus, although the subjects in their study preferred or 
liked certain products, they may have felt distant from them because they 
could not afford them. Nonetheless, there is ample empirical evidence indicat· 
ing that the ego-concept separation relationship is predictive of approach 
behavior; the message strategy discussed next capitalizes upon this relation­
ship. 

IX. THEORY 

We begin by defining the vector space R(.) where each of the contravariant 
vectors R(.) represents the projections of the ath concept on a set of covariant 
(basi~). unit :ectors el': In practice we expect the Rta) to be the result of a 
multidimensIOnal scaling analysis of a set of proximities data for k concepts 
where r is the number of dimensions retained. Therefore, we allow a to range 
over the number of concepts from 1 to k and p. over the number of 
dimensions from 1 to r. 

We further designate the concept to be moved or manipulated (the ·"start" 
concept) as Rf,) and the ideal point toward which it is to be moved as the 
"target" concept R(,)" The object of the analysis thus becomes one of moving 
the start concept along the target vector R(,) - Rf,). For convenience, we first 
recenter the coordinate system with the start concept Rf,) on the origin by the 
translation 

(8) 
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where Rt:., is the position vector of the alh concept after recentering, R/'a) the 
original position vector of the alh concept. Rt:., the original position vector of 
the concept to be manipulated (the "start" concept). " = 1.2 ....• k. and 
I' = I. 2 ....• r. Since R", (by definition the magnitude or length of R(,,) now 
is zero, the target vector is given by Rt). which is represented in Fig. 6 as the 
"targer vector," 

While our understanding of the dynamics of such space. is very rudimen­
taI)', the original procedure is motivated by a simple dynamic assumption: 
When two concepts in the space are associated (formally. when they are 
linked in an assertion of the form "x is y"). they converge relative to one 
another along the line segment connecting them. (This assumption is moti­
vated solely by assuming each concept will move toward the other by the 
shortest path.) In Fig. 6. the sentence "the candidate is friendly" should 
therefore result in a motion of the candidate concept along the vector Rfp) 
(predicted vector) in Fig. 6: As yet. insufficient data are available to warrant 
predictions of the magnitude of this motion. but it!> direction is clearly given 
from our starting assumption. 

Based on this assumption, determination of a' single optimal issue may be 
simply accomplished: First. the angle lJ(PXI) hetween any predicted vector Rrp) 
and the target vector R('J can be conveniently calculated aoS 

(9) 

where 

(10) 

R,,, = IRr,,1 = [g,...Rr"Rr"J'/l (I I) 

and where the quantities g,... are given by the scalar products of the covariant 
basis vectors, i.e., 

8",. = e{.e!. (12) 

The gp can be shown to be a covariant t~nsor of the second rank which 
defines the metric properties of the space and is therefore referred to as the 
fundamental or metric tensor. If the covariant basis vectors cp. are real and 
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orthogonal, then the g,.. take on the familiar fonn 

{
I if p. = P, 

g = 8" = 
"" • 0 if 1'*' 

The numerator of the parenthetical expression in (9) is the tensor notation for 
the scalar product of RiP) and R[,); this alone may be seen as the product of 
the two vector lengths and the cosine of the angle between them. Dividing 
through by the vector length~ [given by (10) and (II») leaves the cosine of the 
angle between them. That concept whose position vector forms the smallest 
angle with the target vector will represent the concept which lies most nearly 
in the direction of the "me" or ideal point. The amount of change advocated 
by this message strategy is given straightforwardly by the length of the 
predicted vector R(p)' which is given by Eq. (10). 

Although it is common practice for psychometricians to retain only real 
eigenvectors or dimensions, it is the prevailing practice of many communica­
tion researchers to perfonn metric analyses of ratio-scaled data averaged over 
very large samples, and most frequently all or nearly all eigenvectors are 
retained, including the imaginary eigenvectors (Woelfel, 1977). As we sug­
gested earlier (Section II) these imaginary eigenvectors are the result of 
violations of the triangle inequalities usually found in empirical data sets. 
Since these violations occur reliably and frequently, communication re­
searchers are usually unwilling to transfonn them away by nonmetric proce­
dures, and must, therefore, make provision for them in analytic algorithms 
such as these. 
. Where the pth through rth roots are negative (corresponding to imaginary 

eigenvectors), theg,.. are given by 

g,.. = { ~ 
-I 

if I' *" 
if I' = • <p, 
if I'=.;;'p 

(13) 

Given these considerations, and Eqs. (9)-(11), we can now solve any part of 
the triangle R(,)Rt)Rip) in Fig. 6. if the message equating the start concept 
R(,) with the concept Rip) were completely successfnl such that R(,) moved to 
R(p)' then the distance between the start concept and target concept (after the 
message) would be given by the distance 

(14) 

Such an outcome is very unlikely in most cases, since we could at best 
assume the point represented by R(,) would move only part of the distance 
toward Rip). The point P in Fig. 6 represents the orthogonal projection of Rt) 
on Rip) and gives the point of closest approach to Rtt 

The length of this line segment is given by 

(15) 

where 8(PI) is as given in (9). Similarly, the distance along Rip) that the start 

,. 
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concept must travel to reach P is given by 

PRYs, = IPRY.,I = IPR\,.Mtan 8,p" (16) 

The percentage of change advocated that must be achieved for this 
message to have its maximum effect is given simply by 

11% max = IOOIPRY.,11 RIP' (17) 
'These calculations, along with an empirically measured estimate of the 
proportion of advocated change actually to be expected. provide ample data 
on the basis of which the optimal single issue may be chosen. 

Multiconcept messages are very easily (and similarly) determined on the 
basis of an additional assumption: Messages average like vectors in the space. 
This is equivalent to the assumption that order effects (like primacy-recency) 
are negligible over the life of the message campaign. Based on this assump­
tion, the position vectors or any two or more issues may simply be averaged. 
to yield a resultant vector given (for two vectors) by 

R\,p) = (Rrn) + R\'{I)/2 (18) 

This resultant vector is then taken as the predicted vector and the procedures 
just described are repea ted. 

Equation (18) can easily be generalized for n vector sums. although the 
number of such combinations of possible messages grows very rapidly as II 

becomes large.2 

Evaluation of the degree of success of the message strategy is also simply a 
matter of determining the angles included between the predicted. target. and 
observed vectors over the time intervallJ.l. In practice, however. it is difficull 
to hold the origin of the space at I + Al precisely where it was at I, and so it 
is convenient to choose yet a different origin. In our work, we establish' an 
origin at the centroid of the set of concepts not included or implicated in any 
message, and rotate the 1 and I + AI spaces to least squares best fit among 
only those unmanipulated concepts. This procedure may be seen as an effort 
to use the unmanipulated concepts to determine a stable frame of reference 
against which the relative motions of the manipulated concepts may be 
gauged. Time one variables transformed into these stable coordinates will be 
represented by barred tensors [e,g., R&}(IJl = RG.}l a?d time two variablc~ will 

. be represented by hats [e,g .• R&ICt2) = Rtr,] as shown in Fig. 7. (The reader 
should be careful to note that these bars do not mean "means:' and the hats 
do not mean "predicted value,s" as is common in statistical usage.) Given 
these definitions we may define the predicted vector acro~s the interval fll as 

R" - RI' {pJ - I..-J ( 19) 

The target veClOr across at is defined as 

(20) 

2In practice. the Galileo™ COmptHer program with which we work computes all possible 
messages with up 10 four concepts to determine an ··optimal message:' 
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FIo.7. Multidimensional scaling space at t and t + I1t represented on stable coordinates. 

Similarly the observed motion vector is given by 

R(o) = it,) - if (,) (21) 

Evaluation of the extent to which the start concept has moved as predicted is 
given simply by the angle between the predicted and observed vector, which 
is given by 

(22) 

Also of interest is the extent to which the start concept has moved in the 
direction of the target, which is given by 

0(<)(0) = cos-l(g""R(t)R(o)/ R(t)R(o» (23) 

There are further considerations. While these equations are sufficient to 
indicate the basic structure of the procedures, many valuable modifications 
can be derived easily by the interested reader. One such example is the 
unweighted summation of vectors in multiconcept messages given by Eq. (18), 
which assumes each concept to be equally effective. This assumption may be 
relaxed by providing weights fJ(.) such that (\8) is replaced by 

R(p) = L fJ(.)R(./ L fJ(.) (24) 
• • 

where fJ(a) are estimated empirically by the regression equation 

R(o) = L fJ(.)R(.) + e 
• 

where e is a least squares error term. 

(25) 

The equations presented here, it may be noted, are all difference equations, 
reflecting the "before-after" or "treatment-control" designs typical of cur­
rent practice. Clearly the emphasis on process implicit in this paper suggests a 
much heavier emphasis on longitudinal designs. When such data sets become 
available, the transformation of these equations into differential form is 
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straightforward. particularly when orthogonal MDS routines are chosen. 
Thus the infinitesimal displacement of the start vector ds(.s} is given by 

(26) 

where the dRt) represent coordinate differentials. Similarly, the instantaneou~ 
velocity of the start vector at 1 is given by 

)', = ds,,/ dl (27) 

and the instantaneous acceleration of the start concept at 1 is 

a, = dif,)/ dl' (28) 

X. THREE-WAY MULTIDIMENSIONAL MODELS 

The discussion thus far has focused on the n X n (where n = the number 
of concepts) or two-way multidimensional model; now attention is given to 
the n X n X d (where d = the number of data sources) or three-way multidi­
mensional model. This section considers multidimensional analyses which 
relate data sources, individuals. experimental treatments, groups. etc .• to the 
universe of which they are a part. 

These "three-way" models require special treatment because the relation­
ship between the spaces of individuals and an aggregate space made from 
those of the individuals is not obvious. As Durkheim (1938) suggests: 

CUrrents of opinion, wilh an intensity varying according to the time and pJace, impel 
certain groups either to more marriages. for example, or 10 more suicides. or to a higher or 
lower birthrate, etc. . .. Since each of these figures contain all the individunl cases 
indiscriminately,· the individual circumstanCeS which may have bad a share in the 
production of the phenomenon are neutralized. . .. The areroge, 'hen, expresses 0 cerlain 
slate oj group mind [italics added. p. lOJ. 

Thus, if one is interested in the actions of this aggregate~i.e .• who it will vote 
for, whether or not it will go to war, repress minorities. buy a product. etc .• 
then analyses ought to be performed on an averaged separation matrix. 

This aggregate, however. may have properties which are different from the 
properties (and attributes) of the individuals who comprise it. since. as 
Durkheim makes clear. aggregation tends to obscure individual or subcultural 
"points of view." Given tWO major "points of view" from. for example. racists 
and non racists. aggregating the data obtained is likely to produce am­
bivalence-a viewpoint that is neither racist nor nonracisl. From a change 
over time perspective. if the population or uculture" that the aggregate 
represents is initially homogeneous (i.e .. characterized by a common point of 
view) and messages are introduced into that culture which polarize them into 
two groups. the averaged poinl of view obtained may misleadingly present to 
the researcher nu discernible changes in that culture. The use of the average 
gives limited and sometime~ misleading information regarding the conceptual 
changes occurring within i1 collection oj individuals as individuals. 
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Individual Differences 

One of the first individual difference MDS procedures was supplied by 
Tucker and Messick (1963), and their model is known as "points of view." In 
this method, a matrix of observations with rows representing pairwise separa­
tion judgments and columns representing individuals is orthogonally decom­
posed via the Eckart and Young (1963) procedure. The resulting factor space 
gives the number of "viewpoints" of those subcultures that are relatively 
homogeneous with respect to the separation judgments of the concepts scaled. 
A "viewpoint" is a factor (dimension) in the factor space of individuals, and a 
subculture consists of those individuals with high loadings on this factor. 

Presenting a different point of view about "points of view," a number of 
three-way metric models have been created; the most widely used of these is 
Carroll and Chang's (1970) INDSCAL. 

Carroll and Chang (1970) began the construction of their procedure by 
assuming that a set of r dimensions underlying the n stimuli are common to 
each data source, and while assuming commonality, they reasoned that some 
data sources would use soine dimensions for distance judgments among 
stimuli, that others would not, and that some would differentially weight the 
dimensions of the common space. Diffferential weighting of a dimension, 
Carroll and Chang (1970) argued corresponds to the importance or salience 
of that dimension for a given data source. 

The result of INDSCAL is two spaces: a common space and a subject 
space. The common space is quite similar to an aggregate space obtained by a 
two-way procedure (with the exception of possible nonorthogonal dimensions 
arid the orientation of the dimensions). The subject space yields coordinate 
values for each data source which represents their weights on the dimensions 
of the common space. For each data source, the correlation between the 
reconstructed separation derived from the "private" space and the original 
separations is used as a goodness-of-fit measure. For the solution as a whole, 
the average of these correlations is used. 

The INDSCAL solution, however, has some disadvantages. As is typical of 
psychometric practice, the centrality of the individual is par1Lmount, and 
INDSCAL implies a set of different spaces, each one of which has an 
individual at the centroid from which originate a set of (generally oblique) 
attribute lines of varying length. Differential weighting of attributes 
is given by differential stretching and shrinking of these attribute lines. What 
INDSCAL cannot account for, however, are order inversions of concepts 
across data sources. Consider two hypothetical people who conceive of three 
concepts that are aligned differently on the same attribute. Person I conceives 
the separations shown in Fig. Sa, and person 2 conceives the separations 
shown in Fig. Sb. A metric analysis for person yields the unidimensional 
space shown in Fig. Sc, and a metric analysis for person 2 yields the 
unidimensional space shown in Fig. Sd. However, averaging the separations 
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for these two individuals. and then analyzing the average S matrix does not 
yield a unidimensional space. as is illustrated in Fig. Se. 

Dimension I of the aggregate space does bear resemblance to the original 
attribute: however. an additional dimension emerges. In this space. note that 
no pattern of stretching or shrinking axes can account for this order inversion 
without the additional dimension. Why this is .so can be shown by relaxing 
the requirement that each space be "subject centered" so that the different 
data sources may be free to locate at different point.;; in the space as shown in 
Fig. 9. 

Figure 9 shows two observers. x and y. situated among three stimuli. A. B. 
and C. From the viewpoint of x. these aTe arrayed along the continuum Ax in 
the order A. B. C. But to observer y. they appear to be arrayed along the AI' 
continuum in the order A. C. B. This can only be the case if A. Band Care 
not collinear in the joint space. 

Marlier (1976) offers a solution to the "ordinal inversion" problem: the 
essence of Marlier's approach is the assumption that the aggregate space or 
cultural perception is "logicaJly prior"' to the individual v"iewpoint. and that 
individual perceptions (distortions) of the cultural "true" space are accounte.d 

-;: .. ; .. 

. ... , ".~ 

..... 
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A. A, 

A 

A 

, 
FlO. 9. Three objects A, B, C (boldface) appear in the order A, B, C to the observer at x, 

but in the order A. C, B to the observer aty. For the observer at x, A, B. C represent the 
unidimensional continuum A~; for the observer at y, A, C, B represent the unidimensional 
continuum Ay- The joint space, however, is two dimensional. 

for by different locations of individuals in the space, much like the view of 
Tucker and Messick (1963). Given this assumption, Marlier's approach is 
simple: First, a set of individuals make separation judgments among the n 
concepts, one of which is "ego." Second all pairwise separation judgments 
among the n - I concepts exclusive of "ego" are averaged into an aggregate 
matrix S, which is (n - I) X (n - I). Then m additional matrices 
S!, 82, ••• , 8m are constructed by augmenting S by adding the row and 
column of estimates of each individual's separation of each concept to him or 
herself. These m matrices are then orthogonally decomposed into multidimen­
sional spaces and then rotated using the unequally weighted rotation proce­
dure described earlier. Weights of zero (0) are assigned to the "egos" and 
weights of one (I) are assigned to the common, aggregate concepts. The result 
is one space which portrays the aggregate common concepts along with the 
individual "points of view" -points which represent the view of each data 
source (ego). The result is an analytic paradigm which produces an aggregate 
space in conjunction with potentially differing "points of view." 

XI. APPLICATIONS 

The MDS procedure may be applied in any situation where a set of objects 
may be described in terms of the dissimilarities among the members of the 
set. Any such set may be described by means of some kind of spatial 
representation, and the number of communication applications which fit this 
model is quite large. Whenever the reliability of the measures of dissimilarity 
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is high (i.e .• random error or measure is small). metric MDS is the appropriate 
procedure. 

Nonmetric procedures may be called ror when two conditions are rulfilled: 
(I) The data are relatively unreliable. i.e .. the random component in the 
measurements is large. and (2) the configuration of the points is known a 
priori to be Euclidean. that is. the configuration of the domain meets the 
criteria of additivity. associativity. and triangle inequalities in Section III. 
This is so because all nonmetric procedures consider any failure of these 
axioms among the measured values (data) to he solely the result of error of 
measure. and iteratively and monotonically transform ,the measured values 
until they meet the metric axioms as closely as possible. (Dirferences in the 
actual monotonic transforming algorithm and differences in the operational 
definition of "as closely as possibleu distinguish the various nonmetric proce~ 
dures rrom each other.) H either or these conditions is not ruJriJIed. nonmetric 
procedures will introduce rather than remove error from the resulting config­
uration. On the other hand. while the metric procedure does not constrain the 
data to fit the meiric axioms. they will yield a metric outcome if the 
(measured) data themselves fit those axioms. Put yet another way, nonmetric 
scaling places low confidence in the original measures and. therefore. forces 
the solution to fit the metric axiorns~ metric scaling places high confidence in 
,the metric of the original meaSures and, therefore. does not constrain the 
solution to fit the metric axioms. 

The metric MDS procedure is appropriately used. thererore. whenever the 
domain of inquiry can be expressed as a relatively reliable matrix of dissimi~ 
larities among a set of objects. There are several genera) classes of problems 
within the field of communi~atjon which meet this model quile well. The 
intercities distance matrix of Table I is an ideal type of a class of such data 
where the cities are examples of any node in general (in this case location~) 
and the distances are examples of somf; physical measure like distance. 
Network-type problem, (see Farace and Mabee. Chapter 12 or this volume) 
are a special case of this type. particularly when interaction rates are 
measured in real (clock) time. Frequencies of interaction can of len be 
measured with high reliability. and there is no reason currently in the 
literature why the spatial structure of communication networks should he 
expected to meet the metric axioms (i.e .. to constitute a real Euclidean space). 

Another generic type of communication domain for which metric MDS can 
be an effective tool is the domain of cognitive and cultural structures and 
processes. Cultural or cognitive domains have often been described as sets of 
objects (concepts. ideas. attributes. etc.) among which people discriminate. A 
cultural domain which has been investigated carefully in communication is 
the domain of voting, where the set of objects consists of issues within which 
are arrayed both candidates and voters (Serota et al .. 1977). Linguistics and 
language behavior constitutes another example in which the domain may be 
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described as a set of symbols which differ in meaning among each other. 
Once again, estimates of the perceived differences among psychological or 
cultural objects can frequently be made with good precision, particularly in 

. the case of cultural differences, which can be averaged over a large number of 
cases. And there is little theoretical basis for the assumption that the structure 
of cognitive or cultural elements should be Euclidean-in fact most current 
theory would probably oppose the rationality implicit in such a model. 

Special cases of such cultural domains include markets and market seg­
ments, where products, services, candidates, etc., may be arrayed among 
a.ttributes, issues, and other relevant cultural objects. Metric MDS has found 
important applications in both business and marketing. 

Because of the availability of the rotation algorithm for least squares 
matching of spaces, metric MDS has found important comparative applica­
tions within all these domains. Quantitative measures of the similarity of 
multiple communication networks, for example, are straightforward, and 
comparisons of subcultures (e.g., male-female, black-white) or cultures are 
similarly made by means of the least squares rotation algorithm. Metric MDS 
has thus found important applications in cross-cultural communications. 

Since the same procedures apply as well to multiple times of measure (as 
well as cross-group comparison) metric MDS has been used extensively for 
longitudinal or kinematic studies. Thus changes in communication networks, 
cultural beliefs, market opinions, and so on, have been extensively analyzed 
by metric MDS procedures. Whenever ongoing processes are interrupted or 
modified by some treatment (such as television viewing, or political debates, 

. etc.), effects may be observed by means of metric MDS, and several such 
studies have been done (Stoyanoff; Barnett). Since processes are central to 
communication, the range of application is very wide. 

When hypotheses about motion are added to process or kinematic MDS 
studies, 'tlmamic models emerge, and such models have engmeering applica­
tions in both prediction of future states or processes (like elections, cultural 
changes, changes in structure of communication networks) and active inter­
vention in those processes. Thus the message generation model described in 
Section VIII has found useful application in marketing and political 
campaigning as well as in theoretical studies of the dynamics of cultural 
change (Cody, 1977) and attitude formation (Gillham & Woelfel, 1977). 
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