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ORTHOGONAL ROTATION TO THEORETICAL CRITERIA: 
CONPARISON OF MULTIDIEENSIONAL SPACES 

Although multidimensional scaling techniques have grown in sophis-

tication as well as number over the past decade, very little use has been 

made of these techniques in experimental psychological work. At least 

part of the reason for this may be ~ue the ambiguities in the over-time 

comparison of multidimensional configurations. These ambiguities arise 

principally from two areas: First, in the popular nonmetric multidirr~n-

sional algorithms (Kruskal, 1964 ab), the gradient or "steepest decent" 

interative processes which intervene between data and configuration will 

always be different in some measure for each of the two (or more) analyses 

to be compared, and there is no ready way to eliminate this artifactual 

source of difference. The classical multidimensional model (Torgerson, 

1958) does not suffer from this problem, but even in the case where the 

metric or the nonmetric approach perfectly fits the data to the conf:i.g-

uration, the orientation of the axes will be arbitrary (cf. Danes, 1975). 

It is now well known in physics that there exists no "priviledged" 

coordinate system against which physical motions may be described, but 

the controversey over relative and absolute motion was one of the long-

est disputes of physical science. The geocentric - heliocentric solar 

system controversy, for example, consisted entirely in a dispute over 

whether the reference coordinate system for measuring astronomical 

motions should be fixed on the earth or relative to the sun and "fixed" 

stars. Nei ther coordinate system is given in nature, but the former, 

which ascribes all motions to celestial objects other than the earth, 

given rise to equations of motion far too complicated to be practically 

and theoretically useful to scientists (Einstein, 1961). In general, 
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the choice of reference vectors against which time-ordered data will be 

arrayed constitutes a decision as to how apparent motions will be differ­

entially attributed to the data points. 

In multidimensional analyses, the locations of points in a cognitive 

space are usually associated by some theory with the "meanings" of the 

concepts they represent. Changes in the locations of these points over 

time, therefore, represent changes in meanings over time. Since the lo­

cation of the points are themselves linear functions of their coordinates, 

transformations (in this case rotations) on these coordinates represent 

theories of meaning and change of meaning. Decisions about which trans­

formations (rotations) to apply therefore cannot be made on purely math­

ematical grounds, but must rest on an analysis of the theories of change 

of meaning implicit in the various transformations. 

Hith this in mind, rotations to congruence (e.g., "Procrustean" 

rotations and other related rotations) that have been suggested previous­

ly (Cliff, 1962. 1966; Gibson, 1963; Green, 1952; Horst, 1956; 1962; Hurley 

& Cattell, 1962; Mosier, 1939; Schonemann, 1966; Schonemann & Carroll, 

1970; Tucker, 1958) when applied to time-ordered sets of multidimension­

al scaling data, imply theories of meaning and change of meaning which 

may frequently be too simple to correspond to substantive notions of 

cognitive change now held by most psychologists. But perhaps more pre­

cisely, applications of currently available rotation algorithms may 

frequently yield apparent motions too complicated to find ready substan­

tive theoretical interpretations. 

TWo such rotation algorithms are most well known. The first of these 

(what might be called a "canonical" or "Procrustes" solution) attempts to 

minimize the angles between corresponding pairs of coordinate aKes 
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over time. The general solution to this problem presented independently by 

Cliff (1966) and Schonemann (1966) identifies two transformation matrices 

1\F and 1\A which, when applied t~ two multidimensional spaces F and A, yield 

two transformed matrices PF and P A. AF and AA are cLosen such that the 

scalar products of PF and PA are at a maximum; i.e., 

n 

q, = 1: PiKA PiKF = MAXIMUl-l. 
i=l 

Since this solution maximizes the scalar product of corresponding 

reference axes, individual data points al'e weighted into the solution as 

a function of their projections on these axes, and therefore points will 

differentially resist motion over time as a function of their distance 

from the origin of the space. Furthermore, since the origin of multi-

dimensional spaces is itself arbitrary, this rotation algorithm may lead 

to apparent point motions which are artifactually very complex. 

Assume for example a psychological experiment which manipulated in-

formation such that subjects precisely reverse their definitions of con-

cpets Band C among the six concepts given in Figure one: 

Tl T2 

, 
tE E 

A B I C D , A C B D 
, 

Fig. 1 

I, F 

If the spaces are placed one atop the other, with origins and axes 

corresponding, the correlation of corresponding axes will be less than 



unity because the order of points along the axes are different. A non-

unity correlation would indicate some non-zero angle of rotation, which 

would in this case reduce the fit between the spaces and complicate the 

. 1 apparent mot~on. 

A second solution is to rotate the spaces to least squares best fit, 

(Woelfel, 1973; Serota, 1974) that is, to try to minimize the squared 

distance between matching concept-points. Such a solution uniformly at~ri-

butes resistance to motion to all the data points regardless of position 

in the space. This method is disadv-ontageou5 because it renders highly 

complex the apparent change in situations where relatively simple laws 

could describe the ~'actua:r'" change,' given a more insightful' rotation. r'or 

example, assume a psychological experimented which persuaded subjects to 

redefine only one point (X) as shown: 

OLD AXIS NEI, AXIS 
; 
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Fig. 2. 

A motion of point X along the horizontal axis results in a shift in the 

centroid, so that, apparently, all four points moved, three of them in a 

direction opposite to that of X, and all of them moved ~, seemingly, 

than X in fact did. Again, 
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Fig. 3. 
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a shift in points A and B parallel to the X axis and in opposite directions 

will cause the least-squares axes to seem to have rotated, so that all four 

points will seem to have undergone rotational motion. In general, analyses 

of these apparent motions would not lead an experimenter to determine the 

simplest explanation for the change in configuration. 

None of these objections are meant to detract in any way from the in­

sight or mathematical ingenuity of these solutions, since both represent a 

kind of optimal solution given no theoretical information about the con-

cepts scaled on the part of the researcher beforehand. When such informa­

tion is available, however, frequently a more insightful transformation 

may be found. Had the researcher known in these cases, for example, that 

a subset of the data had been manipulated and the rest controlled, a rota­

tion yielding far simpler apparent motions could be found2 (McPhee, 1974), 

In both the examples cited, the "extra" information required to fit 

the simplest apparent motions to the data may be seen to be information 

about the points that is independent of their coordinate values--informa­

tion about how they were treated by the experimenter. Since this infor-

mati on is independent of the coordinate values, its value can be seen to 

be invariant under rotation and translation of the coordinates. The 

specification of such invariants under transformation is generally con­

sidered the primary task of scientific theory (Einstein, 1961; Reichenbach, 

196B; Kramer, 1970; Pieszko, 1970. In this case, the invariants consti-

tute forces applied to the concepts by the experimenter, even 
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though those forces are expressed only as zero force or unit force in 

this example. An example of a theory which supplies more information is 

presented by Saltiel & Woelfel (1975). They postulate that the stability 

of the meanings of concepts is directly proportional to the amount of in-

formation about those concepts to which the individual has been exposed. 

Such a notion is analogous to assigning an inertial mass, represented by 

a scalar invariant, to each concept. Many other theories which attach a 

scalar invariant to the concepts can be found, including those theories 

which attribute differential stability to concepts on the grounds of affect, 

familiarity, social desirability, etc. More complex theories, which as-

cribe differential stability to concepts as a function of several variables, 

can of course also be written. We present here a solution including scalar 

invariants. Two cases are considered: first, where only dichotomous in-

formation is available about each concept or point, (such as whether the 

concept was treated or not in a psychological experiment), and second, a 

more general case where multi valued information describes each point (as 

would be implied by the ."inertial mass" theories discussed earlier). 

The dichotomous case: 

The two-valued case is of interest when, for some reason, some sub-

set of the concepts scaled is assumed not to have moved at all, as might 

be the case in a psychological experiment where some concepts are treated 

and others controlled (Saltiel, 1975). 

Gi ven m stable concepts out of n points in an r-dimensional space (m>r), 

the rotation procedure suggested here consists of two primary operations: 

(1) the establishment of a common reference system for the t and the t 1 
n n+ 

spaces, and (2) the rotation of the tn+l space to the tn space so that the 

difference between anyone of the j stable concepts from itself is a minimum. 
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Establishing a common reference system consists of a straightforward 

translation of coordinate axes such that the origin for both spaces is at 

the centroid of the hypothesized stable concepts. It is important to 

emphasize that these concepts are hypothesized to be stable relative to 

each other; thus relative to this stable reference constellation of con-

cepts. ·changes in the locations of the more volitile concepts· may be 

calibrated. 

Given the following coordinate matrices: 

x = the matrix of coordinates at tn 

Y = the matrix of coordinates at tn+l 

The first task is to find: 

A = the matrix X on the common reference system 

B = the matrix Y on the common reference system 

Finding the centroid of a space which is to be used as the origin for a 

common reference system is accomplished by first determining the average 

of the coordinate loadings of the j stable concepts for each of the k 

coordinates; that is: 

h = k 

m 
l: 

j=l 

m 
L 

j=l 

Where, m = the number of stable concepts 

(1.00) 

(1.01) 

xjk = the projection of the jth stable concept on the 
kth coordinate. 

The translation of the coordinate matrices from the old origin to the new 

"stable-centroid" origin is given by: 

(1. 02) 

(1. 03) 
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Where i refers to all of the points in the matrix. In matrix terms: 

A = X c (1.04) 

B = Y H 

With both A and B coordinate matrices now located at a common reference 

system, the next task is to rotate the B coordinates so that the distance 

for any stable concept j from itself is minimized; this amounts to mini-

mizing the following function: 

S .... = 
JJ 

m 
E 

j=l 

m 
E (a 

k=l jk 
= lUN (2.00 ) 

Where bO
jk 

are the stable projections in the rotated B matrix, denoted BO• 

In order to find the elements of B
O

, bO ik' an orthogonal transformation 

matrix T is used such that: 

(2.01) 

The transformation matrix T may. be represented as the· product of a· set of T 

2 
·of (r-r)/2 "transformations Tpq,which perform rotations in a pq plane; Le., 

(2.02) 

Applying the transformations Tpq to the (r)(r-l)/2 pairs of coordinates 

contained in matrix B (with coordinates p = 1, 2, 3, .•. r-l and coor-

dinates q = 2, 3, 4, ••• , r) yields: 

And, the coordinates of BO are the following: 

(2.04) 

T is defined as the two-space orthongonal tranformations commonly used pq 

in classical mechanics, that is: 
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cos Spq -sin sl T = pq (2.05) 
pq sin S cos S~ pq pq , -

S = the angles needed to nu.n~lIlJ.ze the distance of jth 
pq stable conceptions in matrix A from those in matrix 

B. 

The angles of rotation S are determined by first noting that the projec­pq 

tions of the stable concepts j on the p and q coordinates in the matrix BO 

are given by: 3 

bO
jp = b jp cos Spq + b jq sin Spq 

bO
jq - -bjp sin Spq + b jq cos Spq 

(2.06) 

(2.07) 

The angle S which minimizes the j concepts at two points in time in 
pq 

a pq plane is determined by: 

= 
m 
E (a. 

j=l Jp 

o 2 -b .) 'f! 
m 
E 

j=l 

o 2 
(a. -b .) = 

Jq Jq 
MIN (2.08) 

JP 

By substituting (2.06) and (2.07) in (2.08) and expanding yields: 

2 Ea . + 
j JP 

~a2 2 " . + Eb . 
j Jq j JP 

- 2cosS (Ea. b. +Ea. b. ),2sinS (Ea. bJ.q-EaJ.qb. ) 
j JP JP j JP JP , j JP j JP. 

(2.09) 

Taking the first derivative of Ss with respect to the angle S and setting 
pq pq 

it to zero gives: 

dS pq 

which readily 

TanS = pq 

leads to 

sin Spq 

cos S pq 

the 

= 

(2.10) 

following solutions for the angle Spq: 

Ea. b. - Ea b 
j JP ]q j jq jp (2.11) 

Ea. b. 
j JP JP 

+ Ea. b. 
j Jq Jq 
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In the above expression (2.10), the terms involving the angle S are pq 

sin S and cos S . since each of these has period 2~, so does Spq' Thus , 
pq pq' 

a solution has to be considered for S pq between 00 and 3600 ; although two 

possible solutions for Spq will yield an extremum, that angle which produces 

a minimum is the desired angle for rotation. 

The Continuous Case: 

More complete theories frequently provide or specifY measurement 

operations which yield numerical information about concepts which is inde-

pendent of their coordinates. Such acalar invariants are suggested by 

the "amount of information" or "inertial mass" theories discussed earlier. 

This can be accomplished by associating a scalar Mj with each concept inde­

pendent of its coordinate values which controls the extent to which it 

should be weighted in the stable least-squares solution (Danes, 1975). 

Using the "inertial mass" of a concept as an indication of that concept's 

stability, expression (2.08) may be transformed into the following 

minimization procedure: 

S• S n 
pq = E 

j=l 

o 2 h 0 2 
M. (~p-b.) + EM. (aJ.q-b

J
.q ) = Min, 

J JP j=l J 
(2.12) 

Which straight forwardly leads to: 

. 
Tan Spq = ~Mjajpbjq EM.a. b. 

J j J Jq JP 
(2.13) 

! . 
EM.a. b. 
j J JP .3p. 

+ ElLa. b
j j J Jq q 

This weighted solution implies, of course, that the initial translation of 

axes is also weighted; this may be conviently accomplished by computing an 



avel'age which is weighted by the concepts "mass," l'athel' than the dicho­

tomous avel'age given in expl'essions (1000) and (1001). A weighted value 

fol' tl'anslation is given by: 

.• " 
c

k = 

Whel'e, 

n 
E M,x'k 

j=l J J 
(1006) 

n 
E M. 

j=l J 

M. = a continuously scaled meaSUl'e of the "inertial mass" of 
J the jth concept 

n = the total nuffibel' of concepts scaled. 

An Example.: 

11 

While data of sufficent stl'ength to estimate the scalaI' inval'iant fol' 

the continuous case al'e not available at this time, data to which the 

dichotomous case applies al'e fail'ly common. In this case, data wel'e Pl'O­

vided by a communication expel'iment in which subjects estimated complete 

pail'ed dissimilal'ities compal'ison and fol' 15 concepts at foul' points in 

time by a l'atio scaling technique descl'ibed by Woelfel (1974). These data 

wel'e averaged acl'OSS subjects within time pel'iods; two of the concepts 

scaled wel'e pel'sons (soul'ces of infol'IDation; in this case, Timothy Leat>y 

and Linus Pauling). Between times one and foul', l'espondents l'eceived 

fOl'ged messages allegedly fl'om these pel'son advocating incl'easing pel'fol'-

mance of an action (the CTP) whose meaning was left delibel'ately vague. 

This action (CTP) was also among the concepts scaled. Consequently, these 

thl'ee concepts wel'e manipulated in a way which should l'esult in theil' being 

seen as incl'easingly similal' by the subjects acl'OSS the foul'measul'ements, 

while the othel' concepts not manipulated shOUld not change (Woelfel & 

Sal tiel, 1974). 
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The results of an ordinary least-squares rotation are shown in 

Table 1 and Figure 2. It is very unlikely that an experimenter examining 

this solution would detect the pattern of motion hypothesized. 

In Table 2 and Figure 3, however, we present the results of a least­

squares rotation excluding Leary, Pauling and the CTP from the minimiza­

tion. As would be expected, these three concepts now exhibit the great­

est displacements. This, however, would be expected artifactually, and 

so the more important evidence is provided by Figure 4. This figure shows 

a clear pattern of convergence among the points representing Leary, Paul­

ing and the CTP, precisely as predicted. In this reference system, motions 

occur in interpretable patterns which may be related to some psychological 

or sociological theory perhaps more easily than in those provided by a less 

constrained set of transformations ... 



FOOTNOTES 

1. A cano:>nical so:>lution a,Pplied to patterns like this has been found to 

yield apparent motion involving all concepts in the space~ - . 

2. I~e lIIight point out that the application of either of these techniques 

to time-ordered observations of planetary locations would similarly 

fail to yield the Keplerian laws of planetary motion. Contrariwise, 

a rotation technique which took into account properties of the planets 

as described in cla-sical mechanics would yield results consistent 

with smooth. regular planetary mo:>tio:>n. 

3. Henceforward, BO and bO do ~ indicate values for loadings after ~ 

rotatio:>ns are carried out but only after the rotation in the pq plane 

is carried out. 

~. Calculations for these analyses were performed using GALILEe 3.0, a 

metrie~ultidimensional scaling program which provides the operations 

described in this paper for up to ~o x ~o concepts across anY number 

of .t!me Pet'J.oda. ybicb .1a avallable £=In the au~ in versions for 

IBM and CDC Fortran. 
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TABLE 1 

Distances Moved Between Time Intervals in Ordinary Least 
Squares Rotation, No Stable Concepts 

Concept tl - t2 t2 - t3 

01 sleeping 29,096 23.817 

02 dreaming 13,11-31 19.112 

OS day dreaming 23.598 13,939 

011- intense concentration 22.977 27.11-53 

05 marijuana high 28,687 21.326 

06 good 21.160 33.005 

07 depression 18.591 16.979 

08 alcohol high 22.211-5 17.851 

09 relaxation 30.011-0 23.211 

10 CTP 17,851j. 26.237 

11 alpha wave meditation 23.303 21,125 

12 transcendental mediation 16.952 11j..901 

13 reliable 21. 752 25.938 

111- Timothy Leary 22.2111- 25,669 

15 Linus Pauling 33.1j.63 21j..067 

16 me 27.979 19.377 

ts - til-

20.100 

18.200 

111-.396 

15.711-8 

17.798 

21.2711-

17.851 

18.903 

29.811-11-

111-.1j.22 

11.371 

10.837 

11j..330 

19.682 

21j..209 

11j..375 



TABLE 2 

Distances Moved Between Time Intervals 
for Table Concepts Rotation 

Concept t1 - t2 t2 - t3 

01 sleeping 20.923 15.752 

02 dreaming 14.539 18.902 

03 day dreaming 22.033 12.331 

04 intense concentration 20.110 17.462 

05 marijuana high 21. 858 24.396 

06 good 30.317 23.736 

07 depression 20.354 16.093 

08 alcohol high 25.877 11.497 

09 relaxation 31. 861 16.341 

10 CTP 56.868·~ 67.708* 

11 alpha wave meditation 18.728 25.431 

12 transcendental mediation 19.175 15.446 

13 reliable 22.446 21. 220 

14 Timothy Lea~'Y 27.333 71.548* 

15 Linus Pauling 124.533* 74. 952'~ 

16 me 24.766 25.259 

* Indicates concepts not specified as stable. 

t3 - t4 

19.067 

19.285 

17.785 

14.972 

16.136 

13.200 

12.331 

14.937 

26.256 

36.790* 

12.237 

16.713 

27.047 

37.551* 

43.308* 

23.889 



FI~URE II 

Ordinary Least Squares Rotation 
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. FIGURE 5 

Stable Concepts Rotation 

1-

'" 

• 


