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ABSTRACT 

Computational procedures which calculate eigenvectors as 

intermediate or final results of data analysis (such as Factor Analysis 

and multidimensional scaling), are confounded in the comparison of time

series or multiple sample data sets by the arbitrary orientation of the 

eigenvectors across data sets. While the elimination of these arbitrary 

differences in orientation is known to be possible by sequences of 

rotations and translations, special difficulties are encountered when 

the hyperspaces spanned by the eigenvectors are generally Riemannina 

rather than Euclidean. The present article discusses these difficulties 

and presents a general method for comparing time-series or multiple

sample data sets of a Riemannian type under general theoretical con

straintsa 

Worked through examples are presented. 
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Introduction 

ROTATION TO CONGRUENCE FOR GENERAL RIEMANN 

SURFACES UNDER THEORETICAL CONSTRAINTS 

By now it is commonplace to understand that the notion of absolute 

motion and absolute change has no meaning, but rather that any motion must be 

gauged relative to some arbitrary reference frame. In physical work, arbitrary 

but conventional reference frames are often suggested by the character of the 

situation under study, and particularly for terrestrial motions, the surface 

of the earth frequently serves as a suitable choice. Thus for most practical 

terrestrial motions, the surface of the earth may be regarded as fixed, and 

motions of other objects may be calculated relative to the earth's surface. 

In most examples of cognitive or cultural change, however, conventional 

reference frames are seldom obvious. Thus, for example, an individual who 

is regarded as at one time conservative by his or her reference group may be 

regarded at another time as radical by the same group. The individual, 

however, may regard his or her position as unchanged, but view the reference 

group as increasingly conservative. The absence of a standard reference frame 

for social and cultural research has made comparisons of research findings 

across observers and times problematic, and without doubt has complicated 

the development of kinematic and dynamic theory within the human disciplines 

to a great degree. 

'Among quantitative social scientists, the question of reference frames 

has been dealt with most precisely by psychometricians and communication 

researchers within the area of multidimensional scaling (MDS). Within MDS, 

measurements made on arbitrary scales are reexpressed on (generally orthogonal) 

coordinate reference axes which serve as a frame of reference within which 

the objects measured may be arrayed. When measurements have been made at 



- 2 -

multiple times or on multiple samples,' however, the orientation of the 

reference axes in each space are genera11~ arbitrary with regard to each of the 

others. This is equivalent to the well-known mechanical problem of comparison 

of events and processes across reference frames which are in relative motion 

with regard to each other. 

Within psychometrics, many solutions to this carefully studied problem 

have been proposed, all of which include at some stage rotations and usually 

translations, while some allow as well for change of scale (ce~tra1 dilation). 

(N. Cliff, 1966; Scnonemann, 1966; Lissitz, Schonemann, Lingoes, 1978). 

In spite of the care with which these areas have been scrutinized, not 

all areas of concern have been discussed explicitly in the literature. Two 

issues in particular form the focus of this discussion. First, this article 

will discuss the question of establishing theoretical constraints on the 

general solution to the rotation problem, such, for example, as taking some 

subset of measured objects as a frame of reference rather than the entire 

set. While this problem has been dealt with elsewhere (Lissitz, et al., 1978) 

a general solution for other than Euclidean real spaces is not available. 

Thus, the second focus of the present paper is a generalization of the 

rotation problem from real cartesian coordinates to generalized Riemannian 

spaces. 

Theoretical constraints 

The typical "procrustes" rotation problem requires finding a (generally 

orthogonal) transformation which minimizes some "difference" function 

between two data matrices. (Cliff, 1966; Schoemann, 1966). Since the 

transformation desired is generally one which leaves the dissimilarity 

relations within each dataset invariant, the transformation matrix T 

usually consists of a set of pairwise rotations of axes. While this is 
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well-known, it is not often made explicit that such transformations are 

only commutative when the rotations are infinitesimal (Goldstein, 1951). 

Since truly infinitesimal rotations are not possible, in practice 

it is necessary to perform a succession of iterations with a small finite 

angle of rotation. Thus, such a routine would adjust all possible pairs 

of coordinate axes by a small amount, check the value of the difference 

function between the (now adjusted) data matrices, then repeat the operation 

again through all pairs of axes, check again, and so on until the difference 

function can no longer be reduced. (Attempts to minimize the difference 

function for each pair of axes in succession will not in general achieve 

a global minimum.) In the algorithm to be described here, a given pair 

of axes is rotated 1 degree, the difference function is evaluated and 

compared to the starting value of the difference function. If this new value 

is higher than the old value, the original matrix of data is restored and 

the same pair of axes is rotated one degree in the opposite direction. If 

this results in a reduction of the difference function the operation is not 

repeated, but rather a second pair of axes is selected and the operation is 

performed for this second pair. Only after all pairs of axes have been 

adjusted in this way does the routine pass through the set of pairs of 

axes again. 

The most common difference function (and the one used in the current 

algorithm, with some modifications we will discuss below) is given by 
• 

the squared distances among corresponding datapoints in two multidimensional 

configurations summed over all the points, or 

~= R~ RV 
g~v (~) (~) = min (1) 

~ = 1, 2, · .. , r 
V = 1, 2, · .. , r 
~ = 1, 2, · .. , k 
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In expression (1), the matrix g~v has the familiar form 

g = 1 if ~=v 

= OifWFv (2) 

and we are following the Einstein convention that all repeated indeces are to 

be summed over. ~ -~ 
The R(~) and R(~) refer to the projections of the datapoints 

on the two sets of orthonormal reference axes, with the superscript designating 

the axes and the subscript being the label of the datapoint. Lower case r is 

the number of axes, and k is the number of datapoints projected on the 

coordinates. 

When the g have the form given in C 2), expression (1) reduces to the 
~v 

ordinary Euclidean distance function defined for orthonormal coordinate axes 

and little advantage is to be gained from this notation over a more conventional 

form. If we allow the g to represent the scalar products of the coordinate 
~v 

axes, however, then the entries on the principle diagonal will represent the 

squared lengths of the coordinate axes and the off-diagonal axes will be 

given by 

g = ~ Ie I Ie I cos~ 
~v ~ v ~v 

, 

where e and e represent the basis vectors of the configuration, and where 
~ v 

~ represent the angle between the ~th and vth axes. Thus (1) becomes 
~v 

the general distance function for non-orthonormal coordinate axes "(Einstein, 

1951; McConnell, 1933). (If the coordinate axes are curvilinear, expression 

(1) must be replaced by the differential form 
1 

ds"" = 
~ 'v 

g~vdR(~)dR(~) (3) 

but such an analysis is beyond the scope of the present paper.) 

Successive applications of the transformation matrix T through all sets 

0"£ pairs of axes until (1) is at a minimum will in general serve to match 

arbitrarily oriented datasets and thus will serve as a convenient frame of 
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reference against which changes in the configuration of datapoints can be 

calibrated as long as no prior empirical or theoretical knowledge of these 

changes is available. In many interesting cases, however, such knowledge 

is available, and so additional constraints ought to be applied to the 

solution. More specifically, often an investigator may have reason to 

suspect that some of the datapoints have exhibited little or no change 

across the interval of measurement, or, alternatively, should for any 

reason be expected to be the same across datasets, while other datapoints 

ought to be expected to have changed their locations. Such might be the 

case in a laboratory experiment, for example, in which some datapoints have 

been manipulated while others have been controlled. In such a case, the 

solution ought to be constrained such that the difference function should 

be minimized only for those datapoints expected to be stable. Lissitz, 

et a1. (1978) have provided a solution of this problem for real, Euclidean 

datasets, but have not generalized their solution for any Riemann space. 

Two steps are required for this operation. First, the coordinate 

system must be translated such that the center of both datasets lies at the 

center of the subset of stable datapoints. If we designate the subset of 
A~ A 

stable datapoints as R(S) and the number of such stable datapoints as k, 

then the center is given by the vector 

and the desired translation by 

= 
k 
L 
S 

where R(a) = the translated coordinates of the ath vector. 

(5) 

Once both datasets have been translated to a common origin, either 

may be rotated toward the other by means of the iterative application of the 
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matrix of small finite pairwise rotations, but the difference function 

which is minimized must be modifed so that the distances among the datapoints 

expected to change position are not included in the quantity to be minimized. 

All datapoints are rotated, of course, but the distance from each "free" 

or unconstrained datapoint to its counterpart in the second dataset is not 

added into the distance function (1). 

Tables one through five illustrate these procedures for an arbitrary 

real three-dimensional configuration of five datapoints. As table one 

shows, a three dimensional configuration of five datapoints was constructed, 

then the distance relations between the third datapoint and all others were 

arbitrarily modified. Given the arbitrary nature of these data, it is 

certain that a reference frame can be identified (consisting of the 1st, 

2nd, 4th and 5th datapoints) relative to which only the third point will 

exhibit motion. Table two shows the eigenvectors of these configurations, 

which were obtained from a standard diagonalization of the centroid scalar 

products of the distance matrices (Torgerson, 1958) via the Galileo™ 

version 4.5 computer program at the East-West Center in Honolulu. Table 

three gives the eigenvectors translated to the centroid of points one, two, 

four and five, and table four gives the rotated coordinates, as well as the 

distances of each of the datapoints from its counterparts in the second 

dataset. Table five gives relevant data about the orientations of the 

position vectors of the datapoints in the now common coordinate reference 

frame. As these data make clear, only the third datapoint exhibits any 

motion. (The figures show minor error due to the one degree increment of 

the rotation, such that the solution can be accurate to only + .50
, but the 

solution can be made arbitrarily accurate at somewhat greater expense by 

reducing the magnitude of the rotation angle.) 
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Rotation in Generalized Riemann Space 

As noted, the data in tables one through five are real and Euclidean. 

Most psychometricians restrict themselves to such matrices for a variety 

of reasons, but there is increasing evidence against this practice. First, 

arguments that spaces representing psychological or cultural processes 

ought to be real, Euclidean and of small dimensionality have never been 

particularly forceful, and in fact much psychological theory is inconsistent 

with such a view. In particular, balance theories and dissonance theory 

clearly suggest that human conceptions are particularly prone to inconsistency 

and illogicality (Heider, 1957; Festinger, 1957; Newcomb, 1951). Elaborate 

models have been developed to deal particularly with what people do when 

they discover their own inconsistencies: There is good reason, furthermore, 

to believe that violations of triangle inequality relations in pair comparison 

magnitude estimation tasks provide a useful measure of such inconsistencies 

(Woelfel, Barnett and Dinkelacker, 1977). Communication researchers in 

particular have observed regular and statistically reliable violations of 

triangle inequality relations for cultures and segments of cultures (Barnett 

and Woelfel, 1979; Woelfel, et al., 1978; Woelfel and Fink, forthcoming). 

While·it is beyond the scope of this paper to argue the theoretical or 

empirical merits of such a view, it should suffice to point out that there 

exists a large and growing body of workers in several fields who make 

incre~sing use of metric scaling analyses of highly reliable data which 

violate triangle inequality relations. These violations result in the 

presence of one or more imaginary eigenvectors in the solutions of multi-

dimensional scaling problems. In general, any space whose distance function 

is given by (1) above is a Riemann space (McConnell, 1933, p.246). When 

the g 
~v (usually called the metric or fundamental tensor) takes on the 
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values given in (2), the space is Euclidean, We have already considered 

the generalization to non-orthonormal coordinates 'earlier (p, ), 

and an extension to general curvilinear coordinates in (3). It is easy 

to show that the presence of imaginary eigenvectors in the solution requires 

that the corresponding eigenvalues be negative real numbers, and this in 

turn can be accounted for fully by allowing some of the diagonal values 

of the metric tensor to become negative. If we eliminate the restriction 

that the matrix of the g be positive, therefore, we have a general method 
~v 

for defining a distance function for any Riemann space, in distinction 

from some of the more specialized and restricted recent treatments (see, 

for example, Piesko, 1976; Lindman & Caelli, 1978). 

Since the process of diagonalization common to most multidimensional 

scaling programs makes it possible without exception to choose orthogonal 

reference axes, and since it is similarly always possible to normalize the 

solution such that the basis vectors of the space are unit vectors with no 

loss in information, we suffer no important losses of generality if we 

define the metric tensor as 

g~v 0 if ~~v 
= if (6) 1 ~=v<p 

-1 if ~=v~ 

~~v = 1, 2, ... , r 

where the Pth through r
th 

eigenvalues are negative, allowing the Pth through 

r
th 

eigenvectors to take on imaginary values. 

Subject to these generalizations, the form (1) remains a useful difference 

function to be minimized in the rotation algorithm. 

Since the choice of pairwise rotations was itself dictated in part by a 

desire to find a transformation which leaves the distance relations within 

each dataset invariant, however, we may no longer apply the transformation 



- 9 -

matrix T sequentially throug~ all possible pairs of reference axes, This 

is due to the fact that a mixed rotation, that is, the rotation of a real 

and imaginary axes through any angle does not in general leave distances 

within the complex plane invariant, (The reader can verify this quickly 

by considering any rotation of the vector x=(l,i) through an arbitrary angle. 

Since the length is 12 + i 2 
= 0, general rotations obviously leave the 

length in the rotated coordinate system non-zero). 

This problem is easily solved, however, when we recall that any complex 

function may be separated into its real and imaginary part, (Cushing, 1975) 

so that we may partition the datasets into their real parts and their 

imaginary parts, carry out the pairwise rotations separately within each part, 

then rejoin the parts after (1) has been minimized. (Since the submatrices 

of eac~ dataset need not in general be conformable across all datasets, it 

will usually be necessary to augment the sets of lower rank by adding vectors 

of zeros, out this operation does not affect the outcome in any way, even 

thoug~ it is fairly tedious to accomplish in FORTRAN.) 

Taole six shows a set of arbitrary distances among five points which 

violate triangle inequality relations on a small scale. Tables seven and 

eight represent respectively the eigenvectors ("normal coordinates" in the 

Galileo version 5.2 output2) and rotated coordinates representing this 

configuration. These violations are small, but sufficient to produce small 

imaginary loadings in the first dataset and somewhat larger imaginary loadings 
• 

in the second. (The absolute size of the imaginary loadings is of no 

significance, as long as their magnitude relative to the real loadings 

is not sufficient to make the overall length of any vector imaginary, which 

confuses the rotating algorithm in this particular program). Table nine 
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shows the overall goodness of fit of the rotated matrix to the target, and 

once again the algorithm "correctly" attributes motion only to the third 

datapoint. (As remarked earlier, the finite 10 angle of rotation of the 

Ga1i1eo version 5,2 program is responsible for minor departures from the 

correct solution.) 

By way of contrast, table ten gives the coordinates of the same dataset 

rotated to an ordinary least squares best fit, that is, without allowing 

the third datapoint to be free. Table eleven shows goodness-of-fit data 

for this rotation, and, although concept three still exhibits the most 

motion, all the other concepts exhibit a non-trivial motion as well. Figure 

1 shows the first principle plane of the configuration with and without 

the fcons option to give some visual impression of how much difference the 

algorithm makes in practice. 

Conclusions 

Rational determination of relative motion and change requires stipulation 

of some reference frame with regard to which such changes may be calibrated. 

In multidimensional scaling studies, this problem requires establishing 

an invariant set of coordinates against which change processes may be 

arrayed. When no information about the change process is available a priori, 

ordinary least squares "procrustes" rotations provide a best attempt at such 

a solution. When information about the stability and change of the datapoints 

can be provided in advance, however, the ordinary least squares algorithm 

is no longer optimal, but rather a weighted solution is required. In this 

article, the simplest such weighting is discussed, that is, one in which 

datapoints thought to be stable are included in the minimization function 

while those expected to move are left out. The solution is generalized to 
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include any Riemann space subject only to the constraint that only datapoints 

whose lengths are real are included. 

The specific algorithm used in the illustration, (Galileo version 

4.5 and Galileo version 5.2) is an iterative pairwise rotation scheme which, 

while analytically acceptable, is undoubtedly slower than more recent and 

more sophisticated eigenvector routines such as that provided by Lissitz, et 

al. (1978). While these authors have not attempted to do so, modification 

of these more advanced algorithms for general Riemann spaces ought to prove 

straightforward. Specifically, partitioning the eigenvectors into the set 

of real and the set of imaginary eigenvectors, augmenting as needed and 

applying the ~issitz, et al. procedure within each set ought to produce 

the result shown here to higher levels of precision at some computational 

savings. 



TABLE ONE: DISTANCES AMONG FIVE POINTS IN A THREE DIMENSIONAL 

CONFIGURATION AT TWO POINTS IN TI~m 

SET ONE 

DATAPOINT 
1 2 3 4 

1 0.000 0.000 0.000 0.000 
2 8.000 0.000 0.000 0.000 
3 6.708 7.810 0.000 0.000 
4 5.385 6.708 5.657 0.000 
5 10.488 7.874 6.403 10.630 

SET TWO 

Iii 

DATAPOINT 
1 2 3 4 

1 0.000 0.000 0.000 0.000 
2 8.000 0.000 0.000 0.000 
3 3.606 5.385 0.000 0.000 
4 5.385 6.708 4.000 0.000 
5 10.488 7.874 7.550 10.630 



DATAPOINT 

1 
2 
3 
4 
5 

TABLE TWO; EIGENVECTORS AND EIGENVALUES OF THE CONFIGURATIONS 
PRESENTED IN TABLE ONE 

1 2 

-3.882 -1.207 
0.645 4.680 
0.758 - 2.977 

- 3.855 0.226 
6.335 - 0.722 

. SET ONE 

COORDINATES 

3 

2.998 
0.023 

- 1.511 
- 2.192 

0.682 

4 

0.000 
0.012 
0.021 

- 0.019 
- 0.015 

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX--
71.057 32.794 16.545 0.001 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS-
59.019 27.238 13.742 0.001 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS IN THEIR OWN SPACES-

5 

0.006 
- 0.001 
- 0.001 

0.005 
- 0.009 

0.000 

0.000 

59.019 27.238 13.742 0.001 100.000 
SUM OF ROOTS 120.397 WARP FACTOR - 1.000 

DATAPOINT 

1 
2 
3 
4 
5 

1 
-3.578 

1.336 
- 0.869 
- 3.507 

6.619 

2 
- 2.497 

3.814 
- 0.847 

1.150 
- 1.621 

SET TWO 

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX--
71.449 25.450 

COORDINATES 

3 
- 1.625 
- 1.466 

0.088 
2.336 
0.666 

10.698 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS-
66.403 23.652 9.943 

4 
- 0.016 
- 0.002 

0.038 
- 0.011 
- 0.009 

0.002 

0.002 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDlVIDUAL FACTORS IN THEIR OWN SPACES-

5 
- 0.006 

0.002 
- 0.001 
- 0.006 

0.010 

0.000 

0.000 

66.403 23.652 9.943 0.002 100.000 
SUM OF ROOTS 107.599 . WARP FACTOR = 1.000 



TABLE THREE: COORDINATES OF FIVE POINTS AT TWO TlijES 
TRANSLATED TO CENTER OF STABLE DATAPOINTS 

GALILEO COORDINATES OF 5 VARIABLES IN A METRIC MULTIDIMENSIONAL SPACE FOR DATA SET 1 

DATAPOINT SOLUTION TRANSLATED TO STABLE CONCEPTS CENTROID 

1 
2 
3 
4 
5 

1 

- 3.693 
0.834 
0.947 

- 3.666 
6.524 

2 

- 1. 951 
3.936 

- 3.721 
- 0.518 
- 1.467 

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX--
71.236 35.564 

3 

2.621 
- 0.355 
- 1,888 
- 2.570 

0.304 

17.258 

4 

0.006 
0.017 
0.027 

- 0.013 
- 0.010 

0.001 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS-
57.421 28.667 13.911 0.001 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS IN THEIR OWN SPACES-
57.421 28.667 13.911 0.001 

SUM OF ROOTS 124.059 WARP FACTOR 

5 

0.005 
- 0.001 
- 0·.001 

0.005 
- 0.009 

0.000 

0.000 

100,000 
= 1.000 

GALILEO COORDINATES OF 5 VARIABLES IN A METRIC MULTIDIMENSIONAL SPACE FOR DATA SET 2 

DATAPOINT SOLUTION TRANSLATED TO STABLE CONCEPTS CENTROID 

1 
2 
3 
4 
5 

1 

3.796 
1.118 

-1.086 
- 3. 724 

6.401 

2 

- 2.708 
3.603 

- 1.058 
0.939 

- 1.833 

3 

-1.603 
- 1.443 

0.110 
2.358 
0.688 

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX--
71.685 25.674 10.701 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS-
66.337 23.758 9.902 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS 
66.337 23.758 9.902 
SUM OF ROOTS 108.062 

4 

- 0.006 
0.007 
0.047 

- 0.002 
0.001 

0.002 

0.002 

IN THEIR OWN SPACES-
0.002 

.WARP FACTOR = 

5 

- 0.006 
0.002 

- 0.002 
- 0.006 

0.010 

0.000 

0.000 

100.000 
1.000 

i' 



DATAPOINT 
1 

1 - 3.693 
2 0.834 
3 0.947 
4 - 3.666 
5 6.524 

DATAPOINT 
1 

1 3.708 
2 0.839 
3 - 1.017 
4 - 3.652 
5 6.522 

TABLE FOUR: ROTATED COORDINATES 

THE ROTATED COORDINATES OF SPACE NUMBER 1 

2 3 4 

- 1. 9.51 2.621 0.006 
3.936 - 0.355 0.017 

_ 3.721 - 1.888 0.027 
- 0.518 - 2.570 - 0.013 
- 1.467 0.304 - 0.010 

THE ROTATED COORDINATES OF SPACE NUMBER 2 

2 3 4 

- 1. 968 2.586 - 0.007 
3.938 - 0.319 0.019 

- 1.071 0.360 - 0.057 
- 0.495 - 2.594 - 0.038 
- 1.474 0.327 0.026 

DISTANCES MOVED IN THE INTERVAL BETWEEN TIME 1 AND TIME 2 

Concept 1 moved 0.043 units 
Concept 2 moved 0.036 units 
Concept 3 moved 3.993 units 
Concept 4 moved 0,042 units 
Concept 5 moved 0.039 units 

5 

0.005 
- 0,001 
- 0.001 

0.005 
- 0.009 

5 

- 0.006 
0.002 

_ 0,002 
- 0.006 

0.010 



CONCEPT 

1 
2 
3 
4 
5 

TABLE FIVE: MAGNITUDES, SCALAR PRODUCTS, CORRELATIONS AND ANGLES BETWEEN 
POSITION VECTORS OF FIVE DATAPOINTS ACROSS TWO DATASETS 

T 1 MAGNITUDE T 2 MAGNITUDE SCALAR PRODUCT CORRELATION 

4.93 4.93 24.31 0.999963 
4.04 4.04 16.31 0.999961 
4.28 1.52 2.34 0.359398 
4.51 4.51 20.31 0.999957 
6.69 6.69 44.81 0.999983 

ANGLE 

0.5 
0.5 ,I' 

68.9 
0.5 
0.3 



DATAPOINT 

1 
2 
3 
4 
5 

DATAPOINT 

1 
2 
3 
4 
5 

TABLE SIX: DISTANCES AMONG FIVE POINTS IN A MULTIDIMENSIONAL 
RIEMANN SPACE 

SET ONE 

DISTANCES 

1 2 3 4 

.000 
48.497 .000 
24.228 52.507 .000 
43.232 36.701 45.957 .000 
68.330 45.771 85.241 65.100 

SET TWO 

DISTANCES 

.000 
48.497 .000 
60.614 37.094 .000 
43.232 36.701 42.462 .000 
68.330 45.771 27.074 65.100 



TABLE SEVEN: COORDINATES OF 'S POINTS IN A RIEMANN SPACE 

GALILEO COORDINATES OF 5 VARIABLES IN A METRIC MULTIDIMENSIONAL SPACE 

DATAPOINT SET ONE NORMAL SOLUTION 

1 2 3 4 

1 - 19.533 - 17.153 - 6.936 .023 
2 13.124 10.289 16.139 .014 
3 - 35.991 - 5.716 6.701 .008 
4 6.047 23.586 12.193 .032 
5 48.447 -11.005 - 3.712 ;015 

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX--
4232.725 lll0.180 515.936 .002 

NUMBER OF ITERATIONS TO DERIVE THE ROOT--
5 6 4 4 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS-
72.251 18.950 8.807 .000 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS IN THEIR OWN SPACES-
72.245 18.949 8.806 .446 
SUM OF ROOTS 5858.393 

GALILEO COORDINATES OF 5 VARIABLES IN A METRIC MULTIDIMENSIONAL SPACE 

DATAPOINT SET TWO 

1 2 

1 - 32.720 21.527 
2 .891 5.725 
3 19 .• 701 - 8.274 
4 - 21.091 - 20.070 
5 35.002 12.542 

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX--
3129.493 1124.776 

NUMBER OF ITERATIONS TO DERIVE THE ROOT--
5 5 

3 

3.572 
20.844 

9.944 
6.312 
1.015 

586.993 

4 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS-
64.777 23.282 12.150 

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS 
64.642 23.233 12.125 
SUM OF ROOTS 4831.192 

NORMAL SOLUTION 

4 

- .025 
- .000 

.016 
- .016 

.027 

.002 

4 

.000 

IN THEIR OWN SPACES-
.019 

5 

.398 

.267 

.412 

.031 
- .222 

.450 

4 

.008 

100.437 
!' 

5 

- .493 
- .554 

2.121 
1.528 
1.640 

10.071 

4 

.208 

100.019 



TABLE EIGHT: ROTATED COORDINATES OF 5 POINTS IN A RIEMANN SPACE 

THE ROTATED COORDINATES OF SPACE NUMBER 1 

DATAPOINT 
1 2 3 4 5 

1 - 28.530 - 18.582 - 5.261 - .025 .295 
2 4.126 8.860 17.815 .012 .164 
3 - 44.988 - 7.145 8.376 - .010 - .515 
4 - 15.045 22.157 - 10.517 .030 - .134 
5 39.449 - 12.434 - 2.037 .017 - .325 

THE ROTATED COORDINATES OF SPACE NUMBER 2 

DATAPOINT 
1 2 3 4 5 

1 28.444 -.18.857 - 4.824 - .050 1.022 
2 4.260 8.910 17,790 - .079 1.081 
3 25.003 8.589 - 13.000 - .204 2.643 
4 15.360 22.019. - 10,396 ,082 - ,9.9.5 
5 39.544 12,072 - 2,570 ,046 - 1,109. 



DATAPOINT 

1 
2 
3 
4 
5 

CONCEPT 

1 
2 
3 
4 
5 

TABLE NINE: DISTANCES BETWEEN CORRESPONDING DATAPOINTS, MAGNITUDES, SCALAR PRODUCTS, 
CORF£LATIONS AND ANGLES BETWEEN POSITION VECTORS OF 5 DATAPOINTS IN A RIEMANN SPACE 

DISTANCES MOVED IN THE INTERVAL BETWEEN T+ME 1 and TIME 2 

REAL IMAGINARY RIEMANN 

.522 .728 - .507 

.145 .921 - .910 
74.855 3.164 74.788 

.365 .862 .781 

.651 .786 - .441 

T 1 MAGNITUDE T 2 MAGNITUDE SCALAR PRODUCT CORRELATION ANGLE 

34.45 34.45 1187.00 1.00 0.0 
20.32 20.32 413.27 1.00 0.0 
46.31 29.34 -1293.74 .95 162.2 
28.77 28.77 828.18 1.00 0.0 i' 
41.41 41.41 1714.97 1.00 0.0 

• 



DATAPOINT 

1 
2 
3 
4 
5 

DATAPOINT 

1 
2 
3 
4 
5 

TABLE TEN: ROTATED COORDINATES OF 5 POINTS IN RIEMANN SPACE 
TO AN ORDINARY LEAST SQUARES SOLUTION 

THE ROTATED COORDINATES OF SPACE NUMBER 1 

1 2 3 4 

- 19.533 -17.153 - 6.936 .023 
13.124 10.289 16.139 0.14 

-35.991 - 5.716 6.701 _ .008 
- 6.047 23.586 - 12.193 .032 

48.447 -11.005 - 3.712 - .015 

THE ROTATED COORDINATES OF SPACE NUMBER 2 

1 2 3 4 

- 32.140 22.438 3.222 - .060 
1. 719 7.930 20.055 - .096 

17.889 7.541 13.363 - .383 
- 22.429 18.843 5.422 .281 

34.961 11.875 - 4.491 .258 

< 

5 

.398 

.267 

.412 

.031 

.222 

5 

.490 

.545 
- 2.086 

1.502 
1.619 



DATAPOINT 

1 
2 
3 
4 
5 

CONCEPT 

1 
2 
3 
4 
5 

TABLE ELEVEN: DISTANCES BETWEEN CORRESPONDING DATAPOINTS, MAGNITUDES, SCALAR PRODUCTS, 
CORRELATIONS AND ANGLES AMONG THEIR POSITION VECTORS (ORDINARY LEAST SQUARES SOLUTION). 

DISTANCES MOVED IN THE INTERVAL BETWEEN TIME 1 AND TIME 2 

REAL IMAGINARY RIEMANN 

17.031 .888 17.007 
12.287 .820 12.260 
59 .• 003 1. 716 58.978 
18.349 1.553 18.284 
13.536 1.862 13.408 

T 1 MAGNITUDE T 2 MAGNITUDE SCALAR PRODUCT CORRELATION ANGLE 

26.90 39.33 990.51 .• 936252 20.6 
23.21 21.63 427.97 .852744 31.5 
37.05 23.47 - 777.36 - .893854 153.4 
27.23 29.75 646.20 .797614 37.1 I' 
49.82 37.16 1841.46 .994737 5.9. 



" • 



FIGURES 

Figure 1. Two datasets expressed on common (rotated) coordinates. 

Figure la gives the results of ordinary least squares rotation, while 

figure lb gives the result of using only the 1st, 2nd, 4th and 5th 

datapoints as a reference frame. Triangles represent dataset 1. 
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FOOTNOTES 

1. In typical treatments, Riemann surfaces are defined in general by 

the differential form given in (3), since a Riemann space is, 

in general, curvilinear. It is always possible, however, to 

project a curved Riemann surface into a linear Riemann space of 

higher dimensionality (although, particularly in the case of 

hyperbolic surfaces, this may result in the presence of cusps 

or edges, which may be given substantive interpretations by 

catastrophe theory). In the case considered here, we suffer 

no important loss of generality by referring always to the flat 

Riemann space, because metric multidimensional scaling operations 

such as those discussed here will always produce the larger flat 

space in preference to the smaller curved surfaces if the number 

of dimensions is left a free parameter. In our own practical 

experience, as with that of our colleagues, several hundred 

empirical cases have never resulted in a case in which the 

generalized form (1) fails to regenerate the original dissimilari-

ties matrix to within trivial rounding error. 

2. 
1M These data were analyzed by means of the Galileo version 5,2 

computer program at the State University of New York at Albany. 
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