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ABSTRACT 

Most theories of Human Communication tend to be special cases of two general theories. The 

first is a rational model, in which individuals are thought to follow rules in the pursuit of goals. The 

second is a pattern matching model, in which individuals are thought to apply behaviors to contexts on 

the basis of their learned appropriateness to the situational context. This second model seems quite 

consistent with the behavior of massively parallel systems, which are particularly adept pattern 

matching machines. 

Several FORTRAN implementations of back-propagation neural networks with and without 

simple feedback loops, and constructed to read and write the ASCII character set, are presented. These 

networks seem able to learn to associate meaningful linguistic outputs with arbitrary linguistic inputs. 

They can also produce meaningful output patterns even when the input patterns are incomplete or 

degraded. With simple feedback loops added, the networks can take account of their own past behavior 

in interpreting new input, and can also monitor their own internal cognitive states and take them into 

account prior to output of a response. The networks are also capable of interpreting novel (not 

previously encountered) input patterns which are lawful combinations of previously learned patterns, 

and responding to these with novel (not previously uttered) output patterns which are themselves 

meaningful. 

Although the limitations of the networks discussed are very severe, it appears possible to 

understand what features of parallel architecture are essential for developing even more complex 

communication abilities, and a list of such essential features is proposed. 
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Self Referencing Networks 

Intelligence as an Emergent Property of Networks 

A pproaches to the stndy of "intelligence" have been diverse, ranging from those which consider 

intelligence a mysterious qnality which belongs to the sonl, fnndamentally free and not governed by 

scientific laws and thus not analyzable by scientific means, to rationalistic rules based "artificial 

intelligence" or "expert systems". Within this diversity, however, one may identify two major theoretical 

models which nnderlie most Western theories of intelligent action. 

The first of these, and by far the most widely accepted, is a model based on Aristotle's dualistic 

concepts of intellect and will. The intellect represents the calculating part of intelligence. It is the 

part which is aware of its surroundings, identifies and names the objects of experience, and projects 

fnture states of the organism. The will, on the other hand, "attaches" itself to some of these possible 

outcomes and "desires" them. It provides a motive force toward achieving the end state. It is the task, 

then, of the intellect to plan and carry out a course of action which can result in achieving the desired 

goal state. 

The Aristotelian model is not deterministic. Aristotle was aware of the fact that no valid 

syllogism which could be constructed from a combination of "intellectual" and ''willful'' premisses could 

yield an action as a formal logical conclusion. He concluded that human behavior did not have the 

"certainty" of physical systems, and cautioned his followers to seek only the level of precision and 

certainty from this class of phenomena which was appropriate to them. Later Christian philosophers, 

particularly Aquinas, elevated the uncertainty of the Aristotelian dualistic model to the principle of 

Free Will. By far the largest part of contemporary theorists in this tradition accept this notion of 

freedom as an inherent characteristic of human behavior. 

This rational quest for desired end states or goals is assumed to take place within a system of 

constraints which includes the actions of natural laws and the goal oriented activities of other 

intelligences. Thus some of the plans the intellect might derive are impossible and others prohibited 

or proscribed by potential conflicts with others. These constraints, over time, tend to be more or less 

loosely codified into explicit and implicit rules which specify what kinds of actions are available, 

permissible and effective for achieving desired goals, and these rules provide a framework within which 

an intelligent agent mnst act. 

Rnles theories take on many forms. Some theorists focus particularly on human activities in 

social situations, and recommend careful, sensitive and holistic observations of the behaviors of actors 

in social situations as a basis for uncovering the latent set of rules which governs those behaviors. 
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Chomsky's theory of langnage behavior can be seen as a specific example of a non-deterministic rules

based model: Within Chomsky's model, freedom is central and distingnishes human langnage from 

all other species and automata, since the " ... normal use of language is not only innovative and 

potentially infinite in scope, but also free from the control of detectable stimuli, either external or 

internal" (Chomsky, 1972, p.12). Moreover, any speaker's grammar " ... must, then, contain a finite 

system of rules that generates infinitely many deep and surface structures, appropriately related. It 

must also contain rules that relate these abstract structures to certain representations of sound and 

meaning ... " (ibid., p. 17). 

Perhaps the most rigorous and ambitious use of the rationalistic rules based models occurs in 

computer based expert systems, which consist of databases of facts, examples and rules relating the 

facts and examples, and "inference engines" or algorithms which apply explicitly formulated rules for 

achieving specific goals, such as confignring or repairing a complex system, diagnosing and treating a 

disease, determining the location of subterranean mineral deposits, or parsing and understanding 

natural language. 

Whatever the specific form of such Aristotelian models, however, most typically adopt 

Aristotle's judgment about all rational, rule following systems: rational systems are not typically 

assumed to be deterministic, and even computer based expert systems often include substantial 

stochastic components. Unlike a "natural law", any rule may be violated, albeit by risking some penalty 

associated with its violation. 

More recently, an alternative model of intelligent behavior has developed from two uurelated 

research traditions. The first of these is the "symbolic interaction" model. Interactionists particularly, 

following Mead, have emphasized the "symbolic" nature of human intelligence, and suggest that, 

through symbolic interaction with other members of a community, people are able to develop an 

internal representation of the objects of their experience, themselves, and their interrelationships. This 

symbolic representation system constitutes the "self concept", which is believed to be the foundation 

of human intelligent action. (Mead, 1934). 

Many, perhaps most, interactionists are themselves Aristotelian rules based theorists who 

incorporate the interactionist concepts of symbolic communication, self concept and particularly 

situational relativism into the basic rationalistic model. Some, however, advocate a different approach. 

Within this second model, behaviors are considered to be components of the self which, through direct 

("self reflexive") experience or through communication with others, have been defined as the 

appropriate activity for them under specific circumstances. Thus, if one has learned to define oneself 

as brave, brave actions will be appropriate under dangerous circumstances, but if one has learned one 

3 
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is a coward, cowardly actions will be seen as appropriate. In any sitnation one must define the natnre 

of the situation, define oneself, and define a set of potential behaviors which might occur in that 

situation. The behavior actually enacted will be the one most consistent with the self as it has been 

defined in that situation. In this model, behaviors are chosen because they are appropriate and not 

because they lead to a desired end state (Mills, 1940; Foote, 1951; Lemert, 1951; Woelfel and Fink, 

1980). 

This second model, rather than assuming behavior to be rational and goal oriented, assumes 

that behavior selection is a "pattern matching" algorithm. Specifically, within this model an individual 

in a social situation is confronted by a set of "objects" which vary from situation to situation. Among 

the objects in the situation are a set of potential behaviors or actions which, through previous 

experience and communications from others, the individual has learned are possible behaviors within 

that situation. The definition of self within that situation is determined by the individual's 

perception of his/her relationship to the objects in that situation; the pattern of action or "behavior" 

the individual will exhibit will be that which best matches the pattern of relationships to objects 

which defines the self in that situation.' 

Critics of the "pattern matching" model usually indict it specifically for its denial of the role 

of freedom of action, which they usually associate with the ability to interpret and generate novel 

patterns. Chomsky, for example, says: 

" ... (T)he normal use of language is innovative, in the sense that much of what we say 
in the course of normal language is entirely new, not a repetition of anything that we 
have heard before and not even similar in pattern -- in any useful sense of the terms 
"similarH and HpatternU -- to sentences or discourse that we have heard in the past. 
(Chomsky, 1972, pp. 11-12). 

Although these two views have coexisted for a very long time, research findings from neither 

group have had much impact on the views of the other. Neither model, moreover, has been able to 

suggest a physical mechanism which might produce the phenomena under study. In fact, the absence 

of any conceivable mechanism by which novel responses to novel stimuli might be generated lies very 

close to the heart of the dispute, as Chomsky makes clear: 

If by experiment we convince ourselves that another organism gives evidence of the 
normal, creative use of language, we must suppose that it, like us, has a mind and that 

2 No idea is completely new, and notious of ~consisteucy~ or "pattern matching" can be found in Descartes' notion of "appropriatene5S to 
the situation", as Chomsky points Qut (Chomsky, 1972. pp, 12-13). 
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what it does lies beyond the bounds of mechanical explanatiou ... (Chomsky, 1972, p. 
11). 

Recently, however, research in another area has shown some potential for revealing a physical 

mechanism by which a pattern association model of intelligence might be constructed. Workers in what 

has variously been called "artificial nenral networks", "Parallel Distribnted Processing" (PDP) and 

sometimes "connectionist" models have produced suggestive findings which indicate at least some 

behaviors often considered "intelligent" may be emergent properties of communication networks. 

Certain kinds of networks can be shown to receive and store patterns of information, "learn" to 

associate certain patterns of information with other patterns, and solve logical problems. In fact, since 

parallel data processing networks develop internal symbolic representations of their environment 

through interaction with the environment, they may be particularly compatible with an interactionist 

model of human intelligence. 

This paper presents a theory which f ocnses attention on those characteristics of networks which 

relate to their capacity to ingest, store, process and output patterns of information. Specifically, the 

paper presents a general theory of networks which communicate with their environment, and through 

that communication develop representations of the environment, themselves, and their relationship to 

the environment which serve as a basis for their subsequent actions. Since interactionist theory 

considers the central object in any individual's reference system to be the self, we also discuss various 

network architectures which facilitate self referencing. These networks are called here intelligent, self

referencing networks. 

The approach taken in this paper is not meant to imply that work in alternative models of 

intelligence or language behavior is less promising than the approach taken here, but rather we mean 

only to explore the extent to which communication networks are capable of forming intelligent, self 

referencing systems. Nor do we mean to consider intelligence solely a property of individual human 

beings. If intelligence may be a property of networks and not their components, then it is legitimate 

to examine the extent to which intelligence may be a property of social networks rather than solely of 

the individual people of which they are composed. We mean to extend our analysis to communication 

networks in general, and explore in particular the possibility that large scale social networks such as 

those which exist in groups, organizations and cultures may themselves constitute intelligent, self 

referencing systems. Within this system, neural networks make up a subset of the more general 

category of communication networks. Finally, we do not mean to advance the technicallevel of PDP 

models or artificial neural networks, but rather to consider the extent to which current understandings 
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can represent the kind of pattern matching theories of human behavior discussed above. We do, 

however, include an elementary overview of the fundamentals of artificial neural networks. 

2.) Basic Components of Information Processing Networks 

The foundational concept in the present theory is the concept of communication, which 

refers to the changing distribution of energy in space as a function of time. Communication 

in its most fundamental sense, as we define it here, means flow of energy. These flows are in general 

time dependent energy fields. There is no concept of intention or purpose implicit in this definition 

of communication; it is understood simply as a transfer of information or energy by whatever means. 

The region at which two or more flows of energy intersect is defined as a node. Within this 

theory, the state of any node is a function of the flows which define it. lf the energy fields which 

intersect to define a node are one dimensional (as the flow of electricity through an ideal one 

dimensional wire), then the node resulting from the intersection will be zero dimensional, or a point. 

If the energy flows are dichotomous, that is either on or off, then the node will take on only discrete 

values. If the energy fields are continuously variable, then the node can take on any positive real value; 

if the fields may vary in sign, the node may take on any real value positive or negative. If the fields are 

n-dimensional, then the node will be a diffuse n-dimensional region whose value will be a function of 

its coordinates in n-space. 

In general, a set of energy fields may intersect to generate multiple nodes of various 

configurations, each of which will be a time-dependent energy field. The set of these intersecting 

energy fields at any moment will define a network, and the set of nodes resulting from the interactions 

will represent the "pattern" which the network represents at that moment. 

This paper restricts itself to the case of one-dimensional energy fields and their resulting 

"point-nodes". The simplest node can take on only two values along a single dimension, which may be 

described for convenience as "off" and "on." The value taken by a node at any point in time is called 

its "activation value." The set of values taken by any set of nodes at a given moment can be defined as 

a "pattern". "Communication" in this restricted model may be defined as the transfer of all or part of 

the activation value of any node(s) to any other node(s). 

Like any system, a network may be partitioned arbitrarily so that a subset of the original 

network is defined as the "environment" relative to the other remaining part. This partitioning may be 

wholly heuristic, and done solely for the purpose of ignoring the internal properties of the portion of 
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the network defined as the environment. This concept of arbitrary partitioning is particularly 

important in the case of social networks, where each individual person may be considered a node in 

an organization and each organization may itself be considered a node in a larger social network. The 

individual himself Jherself may be partitioned into a set of neural networks. 

Often the level of communication among an arbitrary set of neurons within a single individual 

may be small or zero while the communication between neurons in one individual and another (albeit 

mediated by electromagnetic forms of transmission other than typical neural mechanisms) may be 

substantial. In this (quite common) case, the communication network does not reside wholly within a 

single individual, but rather may exists across a set of individuals. This at least gives rise to the 

possibility that the intelligence of such a network may not reside solely in each of the individuals, but 

rather might be considered a property of the interpersonal network taken as a whole. 

Intelligence as an Emergent Property of Networks: 

A network (considered at whatever level of aggregation) may communicate with its 

environment through weights or links from the environment to nodes within the network. Nodes which 

receive information from links to the environment are defined as Uinput nodes", and nodes which pass 

information through links to the environment are called "output nodes." Nodes which have no direct 

connection to the environment are typically called "hidden nodes." 

Input nodes receive information from the environment in the form of signals which alter their 

level of activation. In the general case, such signals can take on a wide variety of forms ranging from 

"simple, signed numbers of limited precision" to " ... arbitrary symbolic messages to be passed 

among ... units" (Rumelhart & McClelland, 1987, p. 132). 

The function by which the activation value of a node is related to an incoming signal is called 

the "activation function". For a binary node, this function may be as simple as a binary threshold, so 

that the value of the node is set "on" if the input signals exceed a given threshold level, and off 

otherwise. For nodes whose activation values may be multivalned, activation functions may be more 

complicated, particularly when the activation valnes may also be multidimensional, but the binary 

representation provides a sound starting point f or initial understanding. 

For a network whose input nodes are binary, information received from the environment may 

be represented as a pattern of ones and zeros displayed over the input nodes. Thus, when a network 

receives information from the environment, it does so by encountering a signal at each input node at 

each point in time. Those nodes whose input signals exceed the threshold value will be activated, while 
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others will remain off. The pattern of nodes which are activated constitutes a pattern which represents 

the pattern of signals at that point in time. The changing pattern of activations over time represents 

processes in the environment of which the network is "aware. ll 

The number, arrangement and character of the input nodes, along with the character of the 

activation function, determines what kinds of pattern the input system will be able to represent. A one 

dimensional (vector) array of binary input nodes can record the presence or absence of a set. of 

features. Figure 1 shows a vector of nodes, each of which represents a letter of the alphabet. 

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z 

X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 000 

Neurons represented as a vector. Neurons marked 
with "X" are activated, all others are off. 
This pattern could represent "ACT", CAT", "TAC", 
"TCA", "CTA", or "ATC", since no sequence information 
is encoded in this pattern. Multiple occurrences of 
the same letter cannot be encoded within this scheme. 

Figure 1 A One Dimensional Locally Encoded Network 

The nodes marked "A", "C" and "T" are on, which indicates that the network recognizes the presence 

of those letters (features) in the environment. The one dimensional array of nodes, however, cannot 

encode the sequence of those features, so the pattern encoded in Figure 1 might represent "CAT", 

"ACT", or any of four other seqnences of letters. 

A two dimensional array of binary input nodes can keep track of not only the presence or 

absence of features, but also their sequence. Figure 2 shows a two dimensional (matrix) array of input 

nodes. As in Figure 1, each column represents a letter of the alphabet, but each row represents an 

ordinal position in a time sequence. 

The pattern of activations shown in Figure 2 represents the English sentence "HELLO, SPOT". 

Higher dimensional arrays can represent correspondingly more complicated patterns. 
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ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z 

0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 

Input neurons represented as a matrix. Columns rep-
resent letters, rows represent ordinal position in 
a sequence. This network of neurons encodes the 
phrase "HELLO SPOT". 

Figure 2 A Two Dimensional Locally Encoded Network 

Distribnted encoding: 

Both the models in Fignre 1 and Figure 2 represent examples of "local encoding", in which each 

node represents one featnre. A model which encodes a single feature as a pattern of activations among 

several nodes embodies what is called is called "distributed encoding", and can store considerably more 

information in a given number of input nodes. Thus, in Figure 2, although each letter and position is 

locally encoded in a single node, the phrase "HELLO, SPOT" is distributively encoded over the set of 

all the nodes taken together. 

Letters and positions may also be distributively encoded. A set of ? binary nodes is snfficient 

to encode 27 or the 128 ASCII characters; a 50X? matrix of binary nodes can encode the English 

sentence "The quick red fox jnmped over the lazy brown dog," -- or any other string of fifty ASCII 

characters -- including capitalization and punctuation. 
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3.) Communication Processes and Network Structure: 

The model presented up until now has considered only sets of nodes each of which 

communicates with the environment, and none of which communicates with each other. Theater 

marquees and television screens are examples of this class of network. But while the patterns they can 

encode can be very elaborate, they are passive copies of the environmental input and exhibit essentially 

no internal processing. Nodes may, of course, communicate with each other at various levels. The 

channels through which nodes communicate have been called variously ulinksU, uconnections", "weightsH 

and other terms, and those terms will be used here as synonyms. These weights may in general take 

on any real value, and are meant here to represent the proportion of the activation level of any node 

that will be transmitted to another node to which it is connected by that channel. Thus the weight Wi,j 

represents the proportion of the activation value of the ith node that will be communicated to the jth 

node. 

How a node will respond to the inputs it receives from those nodes which communicate with 

it is determined by its "activation function." The activation function determines how a node will 

combine the various signals it receives from all those nodes connected to it. The actual array of 

potential activation functions is infinite, but they may be described in general from simpler to more 

complicated functions. 

The first is the simple linear function, in which all inputs to a given node are summed, and that 

node then outputs a signal which is the sum of all its inputs. Simple linear networks can have 

substantial information storage and retrieval capacities, but cannot produce internal representations 

of environmental patterns that differ from those in the environment, nor can they perform complex 

inferences, such as the "exclusive or" relation. Included within the class of linear networks is the per

ceptron, which was studied extensively by Rosenblatt (1962) and Minsky and Papert (1969) who first 

demonstrated the limitations of inference inherent to the linear two layer network. 

A second common activation function is a simple step function, in which a node outputs a given 

value if the inputs to it sum to more than a given threshold. Even such a simple rnle as this introduces 

important nonlinearity into a network which makes it capable of generating internal representations 

of external patterns which are not simple linear combinations of external signals, and thus substantially 

increases its inferential capabilities. Non linear networks can solve problems like the "exclusive arlt 

relation (Rumelhart, e1. aI., 1986, pp. 318-362, McClelland & Rumelhart, 1988, Chapter 2). The step 

function, however, is not everywhere continuous, which causes mathematical difficulties for some 

learning algorithms. 
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A third commonly used activation function is the logistic function, sometimes referred to as. 

a "sigmoid" function, because its shape when plotted resembles an integral sign: 

where: 

a .-1/( 1 +e -ne'Pi) 
OJ 

api - the activation of the jth node for the Pth pattern, and 

netpj = the net input to the ith node for the Pth pattern from 

all input nodes. 

(1) 

The logistic function is particularly useful since it provides the nonlinearity and increased 

inferential capacity of a step function, but is a continuous differentiable function. This is particularly 

important in supervised learning or "back propagation" models, since these require that the differences 

between the pattern output by a network and the desired or "target" pattern be expressed as a 

continuously differentiable function of the weights so that the weights may be changed to produce the 

correct output (Rumelhart, et. aI., 1987,pp. 318-362). 

Each of these activation functions establishes the activation value of the node solely as a 

function of the inputs from other nodes, but more complicated models can take into account the 

present absolute or relative activation value of the node. These considerations produce anotherfamily 

of activation functions such as "competitive learning", in which nodes already highly activated are more 

likely to be further activated for a given level of input than those not so highly activated (Grossberg, 

1976), or "resonance", in which sets of interconnected nodes, once activated, will tend to maintain each 

other's activation levels (Grossberg,1978). 

Activation functions can take into account variables other than the set of inpnts from other 

nodes and the activation value of the node itself. Tim e is perhaps the most common snch variable, and 

is usually inclnded to model a decay fnnction such that the node loses a proportion of its activation as 

a fnnction of time. This decay functions as a "restoring force" which tends to return nodes to their 

"resting activation levels" as a function of time (Grossberg, 1978; McClelland & Rumelhart, 1988, pp. 

12-15). 

Activation functions need not be deterministic. Several important models, such as the Harmony 
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Model (Smolensky, 1987, pp. 194-281) and the Boltzman Machine (Hinton & Sejnowski, 1987, pp. 282-

317) employ stochastic activation functions, in which the likelihood that a node will be activated is 

a function of the inputs to that node. Stochastic models may well be better representative of actual 

neural functioning, but are almost certainly more representative of the way inputs function to activate 

or fail to activate nodes in social networks than deterministic models, at least insofar as the great 

complexity of input patterns in social networks usually precludes complete measurement of the total 

net input to any node. 

Information Processing and Network Structure: 

The weights, along with the activation functions for each node, make up the structure of the 

network and determine the patterns of flow of information throngh the network. These flows in turn 

determine the process by which a network receives information from the environment, constrncts an 

internal representation of that information, and outputs a response. 

Conversational Networks: 

The main characteristic of networks as we have discussed them here is their ability to represent 

patterns and to associate one pattern with another'. In the most general sense, conversations may be 

construed as sequences of patterns, with each utterance considered a pattern of sounds, words, or even 

letters. With this in mind, it is possible to construct communication networks whose structures are 

optimized for the recognition and association of linguistic patterns. The process of constructing a 

communication network consists essentially of defining the pattern of communication links which are 

allowed among the nodes. 

Figure 3 shows a simple yet interesting information processing network: a three layer feed

forward network. The row of nodes at the top of the figure represent input nodes; they are connected 

to a row of hidden nodes, which in turn are connected to a row of output nodes. Nodes within a row 

are not connected to each other, nor are any of the input nodes connected to any of the output nodes 

, Patterns, like networks, may be arbitrarily partitioned. It may be convenient for some purposes, 
for example, to consider the phrase "How are you?" to be a single pattern, and to consider the phrase 
"I'm well, thank you" to be another. Or it may, for other purposes, be useful to consider both phrases 
part of a single pattern. Depending on the arbitrary terminology employed, a network might be 
considered a "heteroassociatorU

, which associates one pattern with another or one part of a pattern with 
another part, or an "autoassociator'\ which associates any part of a pattern with the entire pattern. 
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except through the hidden layer, and these 

connections are themselves only one way paths. 

Input nodes may communicate to the hidden 

nodes, and hidden nodes to the output nodes, 

but the reverse processes -- hidden to input and 

output to hidden -- are prohibited. 

A network of this configuration can 

receive inputs from its environment, form an 

internal representation of the input patterns in 

the hidden layer, and output a pattern corre

sponding to the input pattern. The pattern of 

weights between the input and hidden layer and 

the hidden and output layer will determine the 

relationship of the output pattern to the input 

pattern. 

Figure 3 Simple 
Layer Network 

Feedforward Three 

A network of this general configuration is implemented in the FORTRAN program SPOT. Its 

input and outpnt layers are each in the form of the 50X7 matrix described earlier, with a 1 X 115 

vector of hidden nodes between them. Each of the 7 nodes in each row of the input and output 

matrices are required f or the distributed encoding of each character in the ASCII set, and each row 

of the input and output layer is thus able to represent one such character. This network can learn to 

associate a number of utterances or "strings" of up to 50 characters with any other arbitrary set of 

strings of up to 50 characters.' The "memory" of what output strings "go with" what input strings is 

contained entirely in the pattern of weights among the layers. 

The network works as follows: input strings of letters are "encoded" into their ASCII 

representations which consists of a seven digit array of l's and O's; and each node corresponding to a 

1 in the appropriate row of the input matrix is turned "on", (that is,its activation value is set to 1), and 

all others are turned "off", or set to zero. Each letter in the string of letters thus corresponds to one 

row of the 50X7 matrix of input nodes. 

, How many such patterns the network could learn would be determined by the number of 
connections possible between the layers, which in turn is determined by the number of nodes in the 
layers. For input and output layers of fixed size, as in the present example, increasing the number of 
nodes in the hidden layer will increase the number of patterns the network can learn. 
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The activation values of the input nodes (either 1 or 0) are mnltiplied by the weights which 

represent the communication strengths between the input nodes and the hidden nodes. The activation 

valnes of the hidden nodes are then calculated from the activation function given in equation (1) above 

-- that is, their values are set as the logistic of the sum of the activations of the input nodes multiplied 

by the weights from input to hidden nodes. The pattern of activations of the hidden nodes represents 

an internal symbolic representation of the input pattern, and serves an intermediary role between the 

input pattern and the output pattern (Minsky & Papert, 1969; Rumelhart, et. aI., 1986, pp. 318-362, 

McClelland & Rumelhart, 1988, Chapter 2). The level of complexity of the internal symbolic structures 

that can be formed, and the level of complexity of the functional relations between input patterns and 

output patterns that can be learned by a network are related to the number of hidden nodes5. 

The activations of the hidden nodes are then propagated to the output nodes by exactly the 

same process. (The values of the weights determines completely what output nodes will be activated 

for any given pattern of input node activations, and thus determines uniquely what the network will 

output or "say" for any given input. How the weights are actually set will be discussed below.) These 

output nodes are then "thresholded"; that is, if their calculated values exceed an arbitrary threshold 

value, the are set to 1, otherwise they are set to zero. The resulting 50X7 binary matrix of output nodes 

can then be "decoded" into the appropriate ASCII characters. 

A network like SPOT can be taught to associate any input phrase with any output phrase by 

setting the communication weights appropriately. Thus, for example, it is possible to choose a set of 

weights such that the pattern of activations of input nodes corresponding to a phrase such as "How are 

you, SPOT?" turns on the set of output nodes which correspond to the phrase "I'm fine, thank you," 

while the pattern of input activations corresponding to another phrase will activate a pattern of output 

nodes corresponding to still another phrase. How many such pairs of input and output patterns the 

network can learn is a function of the number of nodes and the degree of similarity among the 

5 Increasing the number of hidden nodes in an otherwise unchanged network increases not only the 
number and complexity of associations the network can learn, but also increases the speed with which 
it can learn them. This fact is somewhat confounded when the parallel architectnre is simulated on a 
Von Neumann machine, since the number of operations the algorithm must perform increases as a 
function of the number of connections in the network. The SPOT algorithm,for example, learned a 
simple training set in 1,005 seconds with 55 hidden nodes, but took 27 trials to do so. Increasing the 
number of hidden nodes to 75 cut the time to 757 seconds and reduced the number of trials to 15. 
Increasing the number of hidden nodes to 100 reduced the number of trials to 14, but increased the 
time to 960 seconds. Increasing the number of hidden nodes to 115 reduced the number of trials to 12 
and the time to 935 seconds. If the network were able to carry out its activities in a fully parallel 
fashion, increasing the number of nodes would result in a monotonic reduction in both number of trials 
and overall time. 
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patterns. 

Forming and Changing the Network Structure: 

"Teaching" the network to associate arbitrary input patterns with appropriate output patterns 

requires changing the connection strengths between input and hidden nodes and between hidden and 

output nodes. Processes by which network structure can be changed might be called purposive or 

supervised processes. One such method, which is a variant of the Hebb rule, has been suggested by 

Rumelhart, et ai, (1987, pp 318-362). The essential feature of this "back propagation" model is the 

existence of a "target" pattern, that is, a pattern which is, for any arbitrary reason, considered to be 

the "correct" output pattern for a particular input pattern. In the conversational networks described 

above, for example, the output pattern "I'm fine, thank you." might be the "correct" pattern the network 

is expected to output when receiving the input pattern "How are you, Spot?" 

The target pattern represents a pattern of activation values of the output nodes of a network 

corresponding to the desired output. The difference between the pattern desired and the pattern 

actually output by the network can easily be defined as the difference between the activation values 

of the nodes observed and those expected by the pattern. These differences may be considered the 

error s produced by the network. These errors can of course be described as a function of the 

activations of the nodes, which can in turn be expressed as a function of the weights connecting the 

nodes. It is possible, then, to express the errors as a function of the weights. If the activation functions 

of the nodes are continuous (as is the logistic function typically used in back propagation networks), 

then the derivative of this function is defined everywhere on the function, and it is easily possible to 

modify the weights (usually by a quasi steepest descent algorithm) until the error is minimized". Such 

a network can learn to produce a desired output pattern for a given input pattern. 

Both the SPOT and ROVER algorithms described in this paper are back propagation models; 

they are supplied with a set of input phrases along with the set of desired output phrases associated 

with those inputs. Connections between input and hidden nodes and hidden and output nodes are 

initially randomized, so that when the network receives an input pattern, the response it outputs is 

" Notice that this process occurs "backwards" through the network, beginning with the errors of the 
output nodes, then moving to the weights from hidden to output, then to the activations of the hidden 
nodes and then to the weights from input nodes to hidden nodes. This backwards sequence is the basis 
for the name "back propagation." 
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simply a random activation of the output nodes. The errors are then calculated as the differences 

between the actnal values of the output nodes and the values associated with the correct pattern. By 

a quasi steepest descent algorithm, the weights of the connections among the nodes are then modified 

until all the correct response patterns are associated with the appropriate input patterns. 

These networks are "trained" by presenting them with lists of paired patterns. The first pattern 

in each pair of patterns is an "input pattern", and represents a given pattern of activation of the input 

nodes of the network. The second pattern in each pair represents the pattern of activation of the 

output nodes which is meant to be associated with that input pattern. 

When the input pattern is initially displayed, the (initially random) connections between input 

and hidden nodes and hidden and output nodes causes a random pattern of activation of the output 

nodes. The values of this output pattern are subtracted from the values in the "target pattern" and the 

differences represent error. These errors can then be expressed as functions of the activations which 

in turn are expressible as a function of the weights. The derivative of this function is then calculated 

and the weights are modified, the input pattern is presented again and the process is iterated until the 

errors fall below a specified tolerance. Because the activation function of the nodes in SPOT, ROVER 

and ROVER II are nonlinear (logistic) functions, this procedure is essentially an iterative non-linear 

multiple regression model which finds a set of weights which maps the pattern of input activation 

values onto the desired pattern of output activations. 

Figure 4 shows SPOT learning the "correct" responses for two phrases: to the phrase "Hello, 

Spot!", it is expected to say "Hello.", and to the phrase "How are you, Spot," it is expected to reply "I'm 

well, thank you." As implemented in SPOT, the network requires 8 tries to get both responses correct, 

although the network "overlearns" for two more iterations (not shown) until the error is within the 

pre specified tolerance. 

The network begins by producing a random response to the initial inputs, but quickly learns 

the correct response through a series of successive approximations, each time closer to the pattern than 

the last. Figure 5 shows errors for each iteration, along with the elapsed time for each trial. 

The values of the weights represent the learned pathways of communication between the input 

nodes and the output nodes. They represent the network's "memory" of what string of ASCII characters 

it should output f or any given input string of ASCII characters. 

Such a network can be taught to carry on a rudimentary conversation. ("Teaching" the network 

consists exclusively of setting the weights or communication strengths between input and hidden nodes 

and hidden and output nodes.) For an input phrase snch as "How are you, Spot?", it might be taught 
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to respond "I'm fine, thank you." 

Hello, Spot! What's more, as shown earlier, 
A A A. !/A A A A A 5!AA 1/'/\ /A!,,' ,A 

- - - - - - - - - - - - - because the activation values of 

How are you, Spot? 
Hello. 
Hello, Spot! 
Hmmlo. ,( 0' '_ p( 
How are you, Spot? 
Jello. 0 ( 
Hello, Spot! 
Hmmlw.$,( 0' ( "t, 
How are you, Spot? 
Jen w. (p' I_d, 
Hello, Spot! 
Hmllo. 
How are you, Spot? 
J_m w&'($ t'b$' wof, 
Hello, Spot! 
Hello. 
How are you, Spot? 
Igm wed(, tha$d you. 
Hello, Spot! 
Hello. 
How are you, Spot? 
I'm well, thafk you. 
Hello, Spot! 
Hello. 
How are you, Spot? 
I'm well, thafk you. 
Hello, Spot! 
Hello. 
How are you, Spot? 
I'm well, thank you. 

the output nodes are determined 

by the entire pattern of activa

tions in the layers preceding 

them and the entire pattern of 

connections among those layers, 

the complete output pattern can 

be activated by an input of only 

part of the input pattern; minor 

misspellings of the input string, 

or even leaving parts of the 

input blank will still result in the 

output of the entire pattern. 

Thus, for the input string "How 

are you, Sotp?tI, or just "How are 

you?", the network would re

spond "I'm fine, thank you." As 

the input pattern deviated fur

ther from the pattern the net

work had learned to associate 

with the output, the output pat

tern would degrade fairly grace

fully, but would retain the main 

features of the correct output 

pattern even with considerable 

distortion or deletion from the 

Figure 4 Three Layer Feedforward Network SPOT input pattern. 

Learning Two Phrases (Dialogue) Figure 6 shows a brief 

conversation with a three layer 

feed forward neural network (SPOT) in which the input pattern (marked "0:" in the figure) is gradually 

changed from the pattern the network has learned to recognize. The network is able to output the 
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Table One: Total Squared Error by Elapsed 
Time for Learning Two Phrases.' 

CumElapTime Tot ErrSqrd Elapsed Time 

16.92000 
29.55000 
42.85000 
55.20000 
67.24000 
78.66000 
89.37999 

100.03000 
110.63000 
120.73000 

22.85055 
27.98030 
24.09617 
16.42570 
12.22997 

6.93973 
2.93760 
1.62046 
1.67598 

.76299 

16.92000 
8.40000 
8.68000 
8.18000 
7.86000 
7.52000 
7.09000 
7.03000 
7.03000 
6.59000 

*) Rate = 1.000 Momentum = .300 Heat = .000 
Threshold = .500 Local Tolerance = .300 
Nodes:lnput = 210 output = 210 Hidden = 115 
Toshiba 30386 @20mhz with 30387 coprocessor 

Figure 5 Three Layer Feedforward Network SPOT Learning Two Phrases 

correct response even after substantial changes in the input pattern, but eventually degrades as the 

inpnt pattern departs further from the learned pattern. 

Innovative Language: 

As the previous example shows, the thresholding function guarantees that a network can 

continue to produce without error an output pattern it has learned to associate with a given input 

pattern, even when the input pattern differs to some extent from the pattern originally learned. One 

way, then, that a network deals with an innovative input pattern, that is, one it has not previously en

countered, is to output the pattern that corresponds to an input pattern which is similar to the novel 

inpnt pattern. As the example also shows, however, as the input pattern deviates still further from the 

original form, the network outputs a pattern which also differs from the one learned. When these 

deviations are arbitrary, as they are in the example, the network can produce an output pattern that 
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is itself arbitrarily degraded or noisy. The net

work will, in other words, produce a novel output 

when receiving a novel input, although in this 

situation the output will typically be meaningless, 

as in Figure 6. Such productions of novel but 

meaningless output patterns in response to novel 

input patterns does not meet Chomsky'S criterion 

that the novel output be meaningful. 

It is possible, however, for novel inputs to 

a network to be related in systematic ways to 

input patterns the network has already learned. 

When this happens, it is possible for the network 

to output a novel pattern which it has not previ

ously encountered, but which is still a meaningful 

pattern. 

A network identical in strnctnre to the 

network shown in the previous example, although 

employing local rather than distributed encod

ing', was taught to associate the input pattern 

"GREET" with the output pattern "HELLO", and 

also to associate the input pattern "MY FRIEND" 

Conversation with Galileo *SPOT 
0: = Other; S: = SPOT 

0: How are you, Spot? 
S: I'm well, thank you. 

0: How are you, Sopt? 
S: I'm well, thank you. 

0: How are you? 
S: I'm well, thank you. 

0: Hou art yee, Spet? 
S: I'm well, thank you. 

0: How are 
S: A'm well, thank you. 

0: How you doin', Buddy? 
S: Agm weld, t _nk »v, 

0: Howdy do? 
S: A'm"weld, phanc yov( 

with the output pattern "BOB". When the pattern Figure 6 Conversation with Three Layer 
"GREET MY FRIEND" is input to the network, Feedforward Neural Network SPOT 
it responds "HELLO BOB". Neither the input 

pattern "GREET MY FRIEND" nor the output pattern "HELLO BOB" has ever been encountered by 

the network before, but the network is able nonetheless to generate an appropriate English sentence 

, When a network of this type encounters two or more previously learned input patterns 
simultaneously, it activates the combination of communication channels or connections appropriate to 
that combined input set. This produces an output pattern which is a combination of the output patterns 
associated with each of the input patterns separately. In the particular distributed encoding scheme 
employed by the SPOT algorithm, this results in an output pattern which represents a set of ASCII 
characters which, while a proper combination and in fact a valid inference, nevertheless requires 
additional interpretation to be understood. In the locally encoded network used in this example, each 
node represents a single letter; thus when the network outputs a combination of these letters, they can 
be understood easily. 
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which is a "correct" novel response to the novel input pattern. 

To be snre, this is a very limited example of innovation, but, in principle, it responds to 

Chomsky's (1972) argument that the number of possible English sentences is simply too large to have 

been learned and remembered, but must instead be generated from a set of internal rnles. (Chomsky, 

1972, pp 11-12). The sentence "HELLO BOB" was "generated" by the network in response to a novel 

input not previously encountered, bnt the network was not following any rnles in so doing. Nor was 

the novel response in any meaningful sense programmed into the network, bnt rather was exclusively 

the result of its training. 

Self Referencing Networks: 

The network shown in Figure 3 has several interesting conversational properties: it can 

associate appropriate linguistic outputs with arbitrary language inputs, it can recognize a known input 

pattern even if it differs fairly substantially from the exact form in which it was learned, and it can 

produce meaningful and novel output utterances in response to novel inputs. It will, however, always 

respond in exactly the same way to the same input pattern regardless of the context in which it 

occnrred. The network illustrated in Figure 7, on the other hand, is somewhat more sophisticated. This 

network resembles the previous network except for feedback loops from the output nodes to half of 

the input nodes.' This means that the input pattern which is associated with a given output pattern 

includes not only the pattern from the environment, but also the pattern previously output by the 

network. This network need not respond in exactly the same way twice to any given input pattern from 

the environment. The network in Figure 7 is self ref erential in that it takes its immediate past be

havior as part of the pattern to which it must respond. 

In ROVER, the computer program which implements this design, the feedback from output 

nodes to input nodes is done after thresholding the output units. It is more appropriate to think of this 

network as monitoring its behavior rather than its "thinking". If the feedback loop were implemented 

before thresholding, the input nodes would be aware of what the network was thinking just before 

it "spoke", but would not be aware of what it actually said. A more sophisticated network (like the one 

implemented in ROVER II, below) could, of conrse, be aware of both by taking feedback from both 

places. 

8 An architectnre of a similar confignration has been proposed by Jordan (1988). 
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Figure 7 A Three Layer Feedforward Network with Feedback 

Fignre 8 shows a conversation between a network of this type and a person (other). Note that 

the network responds differently to exactly the same input string depending on what it has said 

previously. The network has taken its past behavior into account in determining its response to the 

input from its conversation partner.9 

9 While the network implemented in ROVER takes into account only the last utterance the network 
has made along with the new input from its conversation partner, there is no reason in principle, nor 
any particular technical difficulty in extending the model back for as many stages as desired; a network 
can easily be programmed which will take into account the last two or four or eight or any number of 
previous exchanges in determining what it should output. It is also easily possible to weight earlier 

21 



Self Referencing Networks 

The self-referential capability of Rover 

II adds another important capability to the 

network. The network takes into account both 

what it itself has previously said, along with what 

its conversation partner has responded. But, if 

its conversation partner does not respond, then 

ROVER takes into account only what it has just 

said in determining what it is to say next. This 

means that ROVER can use its own past utter

ances to cue its future utterances, and, as a 

result, may memorize a string of outputs of 

indefinite length. Although we are not aware of 

a mathematical analysis of the capacity of back 

propagation networks, ROVER learned to 

Conversation with Three Layer 
Network with Feedback 
0: = Other; S; = Spot 

0: How are you, Spot? 
S: I'm fine, thank you. 

0: How are you, Spot? 
S: Still fine, thanks. 

0: Oh, I'm sorry. 
S: That's O.K. 

Fignre 8 Conversation with a Three Layer Net
work with Output Feedback 

recite the text of "A Bicycle built for two" in about 20 minutes. 

While the network shown in Figure 7 is self-referential in an important sense, the network 

shown in Figure 9 is even more so. The networks described so far associate input patterns with output 

patterns through weighted communication connections from input nodes to output nodes through 

hidden layers of nodes. When the network has learned an association, the activation of the nodes 

associated with the input pattern will be channelled through the weighted communication channels to 

the nodes associated with the proper output pattern. It is also possible, as shown earlier, for a novel 

input pattern to be related in a systematic way to patterns which a network has previously learned, so 

that the network "knows" a correct response for even these novel input patterns. But when an input 

pattern that the network has not learned to associate with any particular output pattern is input to the 

network, it will output an arbitrary nonsensical pattern. The network does not know whether it "knows" 

what it is about to say, and will produce babbling for unlearned input patterns. 

It is quite important that a self-referential network like ROVER not babble, since such a 

episodes differentially, giving them successively less weight as they recede into the past. How many 
stages (or how long in real time) a network ought to take into account in determining its response in 
order to be an interesting conversation partner remains an unanswered empirical question, but presents 
no special programming difficulties. Such networks could not be accused of "linear, sequential" 
thinking, since they might well revise their understanding of a previous utterance given a later one. 
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Fignre 9 A Three Layer Network with Feedback and Output Monitoring 

network will necessarily take into account the immediate history of a conversation as the pattern to 

which it must respond. If that history contains a sequence of random or arbitrary utterances, there will 

likely never be a consistent pattern for the network to learn, which would seem to present a formidable 

barrier to developing conversational competence. 

The network in Figure 9 (implemented in the algorithm "ROVER II") has an additional node 

which monitors the other output nodes to determine whether they are patterned or not. In order to 

understand how this monitor node operates, it is useful to recall that the network represents a pattern 

by turning some of its output nodes "on" and turning the rest "off". When the network is representing 

a pattern it has learned, therefore, its output values all be either nearly 1.0 or 0.0. (Since the activation 
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function for this network is the logistic, actual values range closer to .9 and .1.) When the network is 

representing arbitrary Or random nonsense, on the other hand, the values of the output nodes will take 

on the full range of values between 0.0 and 1.0, with a mean value of about .5. Thus a network which 

is representing a learned pattern will have output activation values that are maximally different from 

the mean activation level. 

Input to the monitor node, then, consists of the (squared) differences between the actual values 

of each output node and .5, the mean value expected for an arbitrary nonsense output. Once 

appropriately normalized, these values are summed and entered into the activation function for the 

monitor node; if its actual activation exceeds a preset10 threshold, the monitor node "senses ll a 

learned, patterned output, and activates the network's output. If, on the other hand, the activation 

value of the monitor node falls below its critical threshold, it is quite likely that the pattern 

represented by the output nodes is simply an arbitrary, unlearned nonsense pattern. In this case, the 

network's output is set to "blank". It is important to note that this node does not determine whether 

the output pattern is "correct" or "sensible", but simply can detect the difference (in most cases) 

between a systematic, patterned output and gibberish. 

While it would be wrong to attribute too much sophistication to the model implemented in 

ROVER II, the monitor node goes beyond simple self reference, and adds a minor but nonetheless 

important self evaluative dimension to the network. While the model implemented in ROVER is 

"aware" of its past behavior and takes it into account in determining its subsequent behavior, the model 

in ROVER II is aware of both its past behavior and certain characteristics of its present "mental state" 

or "thinking", and it "evaluates" that state before implementing the action implied therein. 

Conclusions and Implications 

While the networks implemented in the SPOT and ROVER algorithms show in principle that 

one may construct conversational, self referencing systems of communication networks, they are in fact 

very simple, small and limited networks. The largest (ROVER II) consists of only 601 nodes, and 

10 While in the ROVER II implementation this threshold is hardwired, it would be a straightforward 
modification to make its value depend on inputs to the network, so that, for some kinds of input, the 
network would be very careful not to babble; that is, to make very sure it "knew" what it was about to 
say before responding, while, in response to other inputs, it might be more willing to guess at a 
response even though there was a high likelihood it was nonsensical. 

24 



Self Referencing Networks 

39,725 possible communication links". Compared to a single human brain, with perhaps 10" neurons, 

these networks are minuscule. Further, while the most sophisticated of the networks described here, 

the architecture of ROVER II is severely limited compared to that of a single human individual. 

ROVER II has only one input "sense": its input is restricted to 50 ASCII characters from a file or 

keyboard, while a human individual can receive information from multiple senses. The simultaneous 

activation of nodes connected to visual, auditory, taste, olfactory and tactile senses, coupled with a 

simple Hebbian learning rnle which enhanced the connection among those nodes simultaneously 

activated, make possible the formation of complex internal patterns which can be activated by partial 

inputs, so that a picture of food, for example, could produce the same pattern as the taste or smell of 

the same food. This is in principle possible for an artificial network like ROVER II, although the 

technical difficulties of simulating such massive parallelism on serial architecture machines are for the 

moment quite formidable. (Although the ROVER II architecture is completely parallel, its 

implementation is simulated on a serial machine. This means that it cannot actually do any two things 

simultaneously, and must take in information in "batches" and operate in discrete "jumps" or "cycles".) 

ROVER II is thns substantially handicapped when taking in information needed to define its 

social sitnation; it may well be more appropriate to compare it to a person who received all his or her 

information about the world from a teletype which could deliver only 50 ASCII characters at a time. 

In spite of these limitations, however, ROVER II provides a useful basis for nnderstanding the way 

in which the basic structure of a network fnnctions in the processing of information which can be 

useful to an analysis of social networks and their information processing capabilities. 

While none of the simple networks presented in this paper may be claimed to exhibit anything 

more than the most rudimentary intelligence or self awareness, they illustrate certain factors that are 

essential to the development of an intelligent, self referencing, goal directed network: 

First, there must exist a set of input nodes which receive information from the environment, 

a set of hidden nodes, which allow the network to form an internal representation of the input 

information, and a set of output nodes which the network communicates information to its 

environment. Second, there must be a pattern of communication channels from the input nodes to the 

hidden nodes and from the hidden nodes to the output nodes. Third, there must be a set of 

communication links from the output nodes to the input nodes so that the network can receive 

11 There are 350 input nodes, 75 hidden nodes, 175 output nodes and one monitor node. There are 
thus 350 X 75 ~ 26,250 possible pathways from the input layer to the hidden layer, another 13,125 
pathways from the hidden layer to the output layer, 175 pathways from the output layer to the monitor 
node, and 25 feedback pathways from output to input. These limits were set simply to allow the 
software to run in a 640k DOS environment. 
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information about its own behavior. Fourth, there must exist a node or set of nodes which monitor the 

output activations of the network to determine whether those values represent previously learned 

patterned information, and which can activate a "training mode" if the output is not patterned so that 

the network can learn a response to the new pattern. Fifth, there must be a set of nodes which encode 

a pattern or goal state which is associated with each input pattern, which is intended to serve as the 

appropriate output for that input. Sixth, there must be a defined error function which makes it 

possible to calculate the extent to which the pattern displayed by the output nodes differs from the goal 

state encoded in the pattern nodes. Seventh, the error function must be able to express the error as 

a function of the activation values of the nodes. Eight, the activation values of the nodes must in turn 

be expressible as functions of the weights or communication channels among the nodes. Ninth, there 

must be some active algorithm by which the network is able to modify its internal pattern of weights 

to reduce the errors. Tenth, the overall functional relations from input through hidden to ontput nodes 

must in general be non linear. 

When these conditions are met, it will be possible for a network to receive information from 

its environment, form internal symbolic representations of that information, act (produce ontputs), 

monitor its actions, and modify its actions if they are inappropriate. Networks which meet these 

conditions can not only learn about their environment in a passive way, bnt can actively modify their 

oWn confignration to produce desired outputs for given inputs. 

To be snre, the implementation of sophisticated, intelligent, self referencing networks with 

sufficient capacity to exhibit interesting behaviors involves no minor technical accomplishment, 

particnlarly when simnlated on serial architecture machinery. Nor are the difficulties solely technical. 

The monitor function described in the ROVER II model is quite rudimentary, and can only determine 

whether a proposed output is patterned or not. Much more sophistication is required from a model 

capable of interesting behavior. Certainly a more sophisticated monitor would take into account the 

appropriateness of the output for the circumstances under which it was proposed. An satisfactory 

model would require as well that the network take into account the reaction of others in the 

communication situation. Cooley's (1902) "looking glass self" model requires that the reaction of others 

to one's behavior can result in It ••• pride, mortification or shame," which are emotions well in advance 

of ROVER II's crude capabilities. 

Nonetheless, however crude the level of implementation, the fundamental architecture 

employed in ROVER II represents a useful first step. Indeed, while the limitations of ROVER II are 

severe and obvious, it does exhibit cognitive abilities that some have claimed distingnish human 

intelligence from machine intelligence: First, it can recognize limited language patterns and associate 

26 



Self Referencing Networks 

them with appropriate responses. Secondly, it is self-reflexive, and can observe its own activity and take 

that activity into account when determining its response. Third, it is recursive, and can revise a past 

judgment based on new information; that is, it need not always give the same response to the same 

input, but evaluates each input in light of its previous activity. Fourth, it is robust enough to provide 

the "correct" response even when the input is partially garbled or incomplete. Fifth, it can monitor its 

own internal cognitive state in a limited way, evaluate its potential activity and modify that activity 

based on that evaluation. And sixth, it can learn to associate new patterns through interaction with 

others. Since ROVER II can do all these things, yet is clearly not remotely "human", these 

characteristics can not be the essential characteristics which distinguish human intelligence from 

machine intelligence in a qualitative way. While it is impossible to rule out the possibility that there 

is a qualitative difference between what algorithms like ROVER II achieve and the actions of 

intelligent organic systems, it is important to point out that at least a major component of the 

difference in cognitive capacity between ROVER II and a simple organic intelligence is attributable 

to the sheer size differences between these systems. 
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