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I. THE PROBLEM 

Whatever the nuances that distinguish them, virtually all attitude theories consider 
attitudes to be some sort of relationship between a person and an object. What kind 
of relationship is involved and what kind of an object is considered makes up the 
largest part of the difference in definitions from one theory to another. 

Since Mead (1934), however, problems with the concept of "object" have mul­
tiplied. Mead questioned the unitary, absolute concept of any object, arguing 
instead that any object was a constructed amalgam of stimuli, assembled on the 
basis of situational and historical cues, changing from time to time and from situ­
ation to situation. Clearly questions of how attitudes toward objects are formed 
and changed are compounded if the definition of the object of the attitude is itself 
inconstant. 

Most theories of attitude formation and change have simply disregarded this dif­
ficulty, particularly when formulating mathematical expressions (Saltiel & 
Woelfel, 1974; Woelfel & Hernandez, 1973; Saltiel & Woelfel; 1975; also see 
chapter 3 in the present volume). This is not a problem for the typically short-term 
experiments usually reported by these studies (see chapter 3 in the present vol­
ume) or long-term objects like career aspirations (Saltiel & Woelfel, 1975), but it 
detracts from the generality of any such theory. What is needed is a more general 
model that accounts not only for the formation of relationships between person 
and object, but also for the formation of the object itself. 

II. INTRODUCTION 

The concept of attitude was invented by Aristotle to resolve a philosophical 
dilemma. that had frustrated Greek thinkers since Parmenides and Heraclitus. 
According to the principle of causality, nothing could come from nothing, which 
meant that everything must have a cause. Moreover, the principle of noncontra­
diction held that the cause must be like the effect-if the effect were motion, then 
motion must be in the cause; ifthe effect were redness, then redness must be in the 
cause. This thinking led Aristotle to believe that every act existed in potency 
before it was actualized and that these potential acts could be traced in an unbro­
ken chain back to the original uncaused cause. 

This notion, called Aristotle s entelechy, was meant to apply to all motion and 
change, so that the forms red and ripe existed in a green tomato from its first 
moment of existence, but became actualized as it ripened. In Aristotle's psychol­
ogy, the idea of a preexisting potential act takes the form of an appetite or inten­
tion, which is a potential to respond in a certain way. 

So deeply embedded in the Western mind is this Aristotelian entelechy that it 
underlies virtually every modem definition of attitude. Thus George Casper 
Homans, for example, unaware that he is simply recasting a 2,000-year-old theory 
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in 20th century words, theorizes that "internal states" such as "drives, emotions, 
feelings, affective states, sentiments, attitudes" cause "activities," which are 
"things that people do" (Homans, 1950, pp. 34-38). Even George Herbert Mead, 
whose theory of self-concept is often considered a contemporary alternative to tra­
ditional attitude theory, was an Aristotle scholar, and held fast to the neo- Aristo­
telean concept of "impulse" in his own model. 

Mead and his students did, however, undermine the simplistic Aristotelian 
model in several ways. First, they argued that attitudes were more than simple, 
individual impulses toward individual activity, but rather were socially organized 
orientations toward coordinated activity that arose from the interlocking role 
structure of a society. And second, behaviors themselves were understood as 
social objects, which were constructed out of many component activities by actors 
in situations interpreting their behavior in socially defined ways. Thus the bound­
aries of a specific behavior, such as "shopping" or "eating dinner" where both 
fuzzy and socially defined in an ongoing and creative process. I 

However advanced, Mead's notion of attitude, like Aristotle's and Homan's, 
remains abstract and unobservable, and this nonempirical characteristic is a seri­
ous problem for many, giving rise to the whole philosophy known as behaviorism, 
which argues that the concept of an unobservable disposition is unnecessary to the 
understanding of the interrelationships among various behaviors. For scholars of 
every persuasion, however, the absence of a mechanism that describes how behav­
ior is generated from experience has remained a deep problem. By what mecha­
nism are linkages between individual actors and actions made, and, perhaps more 
fundamentally, by what mechanism is any sequence of continuous and undifferen­
tiated activities clustered into a named and definable act or behavior? 

Even more basic is the question of how any set of multiple and disparate sensa­
tions is combined to produce a single object of perception toward which one can 
be said to have an attitude. Most definitions of attitudes consider them to be some 
sort of orientation toward an object or objects, but leave unanswered the question 
of what is an object and how objects come to be formed. The question of how mul­
tiple stimuli or sensations are separated from the rest of experience and defined as 
a single object or behavior is, in this chapter, clustering. 

III. CLUSTERING 

Since Aristotle, clustering l has involved assigning objects into categories based 
on one or more shared characteristics. All those who share the characteristics 
rational and animal are assigned to the category men by Aristotle, and all those 
cars that have four doors and cost less than $10,000 are classified as low-priced 
sedans by automakers. 

In everyday life, however, people categorize intuitively, often without any 
explicit understanding of the basis of their own classification scheme. When a per-
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son shops for a new car, for example, he or she forms a category called the "con­
sideration set" that includes only those cars actually considered for purchase. 
Quite often, the consideration set of the buyer includes vehicles that manufactur­
ers do not generally see as members of the same category, such as sport/utility 
vehicles and lUxury cars, or sedans and pickup trucks. More often than not, not 
even the prospective buyers themselves have any idea what characteristics these 
vehicles share, other than they are all cars they might consider buying. 

Although comparing the average motorist's selection of a new vehicle to Aris­
totle's essentialistic view of category formation may seem like moving from the 
ridiculous to the sublime, each illustrates one of the two most common theories of 
clustering: (a) stimuli form into clusters because they share one or more essental 
characteristics, or (b) stimuli form into clusters because they have come to be 
related to each other due to arbitrary, perhaps random, factors. 

IV. NEURAL NETWORKS 

Neural networks provide a fundamentally new approach as well as a powerful new 
way to think about categorization and clustering. This new and fundamental 
aspect of neural networks follows from the fact that they represent a synthesis of 
new discoveries about how clustering occurs (Rumelhart et. aI., 1986; Woelfel, 
1993). 

Neural networks do not work by maximizing or minimizing some criterion as to 
how clusters should be optimized, as do conventional algorithms. Rather, neural 
networks work by examining examples of existing clusters and "learning" to pro­
duce clusters like those studied. More precisely, neural networks become increas­
ingly similar to their environment, and, if the environment finds a set of objects 
closely linked for whatever accidental reasons, these objects will be closely linked 
in the network. If those car buyers who consider buying Lincoln Mark VIII, Cadil­
lac STS, and Acura Legend also consider Jeep Cherokee, then the net will link 
these vehicles together even if it has no clue as to what attributes they might share 
that makes them similar. 

In practice, this means that analysts need not understand what criterion is being 
maximized or minimized to produce clusters of the sort needed-and it is not even 
necessary that there even be such criteria-it is only necessary to produce some 
examples of clusters that already exist. These "cases" are then studied by the neu­
ral network, which learns how to produce others like them. 

A. A Backpropagation Example 

There are two major kinds of neural networks: supervised and self- organizing. 
The best known are backpropagation supervised models, which have been well­
defined elsewhere (Rumelhart et aI., 1986; Woelfel, 1993). The basic back-pro-
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pagation network consists of three or more layers of neurons, an input layer, one 
or more hidden or middle layers, and an output layer. In the simplest model, each 
neuron can be either "active" or "inactive"; basic biological neurons generally 
take on three values? "off' or inactive, latent or "ready," and "active." The most 
powerful networks have neurons that can take on continuous values within a 
defined range. Initially, each neuron in the input layer is randomly connected to 
the neurons in the hidden layer, and each neuron in the hidden layer is randomly 
connected to the nodes in the output layer. The connections can generally take on 
any positive or negative value within a defined range. 

In operation, each neuron in the input layer is identified with an input charac­
teristic (equivalent to an independent variable in regression analysis.) Each output 
neuron is similarly associated with an output characteristic (equivalent to a depen­
dent variable in regression analysis.) The network then reads a case (exactly as in 
regression analysis) and assigns to each input neuron the value of its correspond­
ing input characteristic or independent variable for that case. These activation val­
ues are then propagated forward to the hidden layer through the (random)" 
connections. Each hidden neuron sums up all inputs it receives from the input 
layer (these consist of the activation values of the input neurons multiplied by the 
connection weights), transforms them (usually by a logistic function), and, if the 
result exceeds a given threshold, takes on its own activation value. These activa­
tion values are then communicated in the same way to the output layer neurons, 
which take on certain activation values. 

Because the initial connection weights in the network are random, the values 
taken by the output neurons will themselves be random. But the network can com­
pare these activation values to the actual values for the case. It is straightforward 
from this point to write the function that relates the errors of the output neurons to 
the activation values of the input and hidden neurons, as well as the connection 
weights. The derivatives of this function are calculated, and the weights are 
adjusted via a quasi-steepest descent algorithm until the differences between the 
activation values of the output characteristics and the values of the corresponding 
variables in all the cases are minimized (Rumelhart et aI., 1986; Werbos, 1974). 

The backpropagation supervised neural network may be considered a general­
ized regression model that can approximate any function, regardless of nonlinear­
ity and interactions, and is often used as a replacement for regression models 
(Cybenko, 1989; Dispenza & Dasgupta, 1992; Funahashi, 1989; Kurkova, 1992). 
In this sense, the network is a kind of model of the attitude formation process, in 
that it "learns" to form a relationship between one (input) set of objects and 
another (output) set of objects; the relationship, of course, representing the atti­
tude. When the network encounters a particular pattern of input objects, it will out­
put a particular set of responses toward the output objects (i.e., it will "act" toward 
the objects in a certain way). 

To show how a backpropagation supervised neural network can form categories 
without referring to a defining attribute or attributes, a simple problem was con-
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structed using the concepts P51, P38, B17, B29, BOMBERS, FIGHTERS, 
ALLIES, and AXIS. Of these, the first seven were used as input characteristics 
(the equivalent of independent variables in regression analysis), while the last four 
were used as output characteristics. 

Data consisted of "cases," analogous to the regression model case, where each 
case consisted of a specific set of values of both input and output characteristics. 
The first case, for example, gave these values (dependent or output characteristics 
below the line): 

P51 1 
P38 0 
ZERO 0 
ME 109 0 
B17 0 
B29 0 
HEINKEL 0 

FIGHTER 1 
BOMBER 0 
ALLIES 1 
AXIS O. 

This case indicates that the P51 is an Allied fighter. 
Note that it is not necessary to restrict ourselves to a single "active" input char­

acteristic per case, as the following case shows: 

P51 
P38 1 
ZERO 0 
ME 109 0 
B17 
B29 I 
HEINKEL 0 

FIGHTER 
BOMBER 1 
ALLIES 1 
AXIS O. 

This case says that the P51, P38, B17, and B29 are associated with fighters, 
bombers, and the Allies. 

The network developed to deal with these cases consisted of seven input nodes, 
three hidden nodes, and four output nodes. It trained in 4,600 "training events" and 
produced a solution that allows convenient classification of any input. For exam-
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pie, if one were to input the following values of the input characteristics, the 
trained network would estimate the output characteristic values as follows: 

P51 I 
P38 0 
ZERO 0 
MEI09 0 
BI7 0 
B29 0 
HEINKEL 0 

FIGHTER .89 
BOMBER .11 
ALLIES .90 
AXIS .10. 

This output means that, when faced with a P51, the network classifies it as an 
Allied fighter. But consider the following input: 

P51 
P38 1 
ZERO 1 
ME 109 1 
B17 0 
B29 0 
HEINKEL 0 

FIGHTER .90 
BOMBER .10 
ALLIES .09 
AXIS .11. 

This means that, when faced with two Allied fighters and two Axis fighters, the 
network decides they are members of the category "fighter" and declines to say 
whether they are Allies or Axis. Although this is a very simple example (deliber­
ately designed to be so) it shows that there is a sense in which the neural network 
is nonhierarchical. The neural network does not assign each stimulus into its one 
best category, but assigns each input stimulus into one or another (or several) cat­
egories depending on the context in which it is seen. 

If we accept the general notion that an attitude is a relationship between a person 
and some object, the implications of neural clustering become evident: What one 
considers an "object" to be at any given moment and in any situation depends on 
the configuration of stimuli active in that situation. Earlier considerations of atti­
tude formation tend to attribute a unitary and permanent existence to objects and 

I 
il 



220 WOELFEL 

have been justly criticized for failing to recognize the situational definition of 
objects. What has been called Linear Force Aggregation Theory (Woelfel & Her­
nandez, 1973; Woelfel & Saltiel, 1978), for example, argues that the stability of an 
attitude toward an object is a function of the amount of information (operational­
ized as number of messages) that formed the attitude. But that model fails to deaI 
with the very likely assumption that the definition of the object of an attitude 
changes situationaIly. Neural networks provide a satisfying mechanism for 
explaining how situated meaning works. But they go further and show how the 
relationship between the person and the object are simultaneously defined in the 
same situation: An individual defines both the object and his or her relationship to 
it simultaneously in real time. 

1. Unsupervised Neural Networks as Clustering Algorithms 

There are still problems with the supervised approach to classification and clus­
tering, however. These networks are still hierarchical, because they treat one set of 
stimuli (usually elements or members of categories) as inputs and others (usually 
the category names) as outputs. Although it is possible to define a problem within 
a supervised network so that this is not so, there is an easier and more direct way 
to deal with the problem using unsupervised networks. Moreover, the supervised 
approach requires that the list of possible categories be known in advance, because 
they must be coded as the output characteristics. A further problem is that the 
backpropagation algorithm is computationally intensive, and can be very slow­
and sometimes completely intractable-for large problems (Jacobs, 1988; Rigler, 
Irvine, & YogI, 1991; Tolleneare, 1990; van Ooyen & Niehaus, 1992; YogI, 
Mangis, Rigler, & Zink, 1988). 

In an unsupervised network, however there need be no distinction between 
input and output nodes. (Some unsupervised plans do make such a distinction, but 
this is not necessary.) It is also unnecessary to define the categories in advance or 
even to know how many there are. It is not even necessary that each case have the 
same number of variables. Moreover, the interactive activation and competition 
(lAC) network that is described here is very fast and can train in a single pass. 

2. Structure of a Simple Unsupervised Network 

Consider a network of 11 nodes, none of which are connected to any of the oth­
ers. Let each node represent one of the stimuli in the preceding example-that is, 
P5 I, P38, B 17, B29, BOMBERS, FIGHTERS, ALLIES, and AXIS. Now we can 
expose this network to the data by the following rule. When it reads a "case," each 
stimulus that occurs in the case will activate its corresponding neuron. If the net­
work "reads" a case that says "PSI, P38, FIGHTER, ALLIES," for example, the 
nodes that correspond to those four stimuli will become active. 
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3. A Simple Learning Rule 

Now we adopt a second rule (called a Hebbian learning rule, which is mathe­
matically equivalent to Pavlov's law of association) that says that the connection 
among any nodes that are simultaneously active will be strengthened, whereas all 
others are weakened (Hebb, 1949). Clearly, after reading severaI cases, those stim­
uli that co-occur in the cases will tend to become positively interconnected in the 
network, whereas those that seldom or never co-occur will become negatively 
interconnected. The net result will be a square similarities-dissimilarities matrix 
that expresses the interrelations among the stimuli in a concise fashion. 

4. Operation of the Network 

A very wide variety of operational rules exist, but the following is one of the 
most powerful. Whenever a node is active, it transmits its activation to all th~ ot~er 
nodes to which it is connected with a force that is proportional to the activation 
value multiplied by the connection strength. Thus, if we consider the activation 
value of a given node to be 1, and it is connected to a second node with a connec­
tion strength of .5, it will transmit an activation force to that node of .5. If it is con­
nected to a third node with an activation value of -.7, it will communicate to that 
third node an activation force of -.7. Because this force is negative, we can con­
sider it a force that attempts to tum that third node off rather than on. 

Now, what happens to the nodes that are not active? Each of these receives acti­
vation forces from all the other nodes to which they are connected. Some of these 
forces are positive, and others may be negative. In a typical network, each node 
sums up the incoming forces (usually in a nonlinear summation function, typicaIly 
a logistic) and, if the resulting sum is greater than some present threshold value, 
the node itself becomes active. In some networks, the activation values of the 
nodes may be binary--{)n or off, zero or one, or plus or minus one-but in the net­
work considered here, the activation value is continuous, allowing any positive or 

negative number. 
What results is an interaction among the nodes, each competing to tum on or off 

others in the network (hence this kind of unsupervised network is often called an 
lAC network.) In practice, in terms of our simple network, we might activate the 
node called "P38," which will in tum attempt to tum on some other nodes and tum 
off some others, depending on the connection strengths among them. As some oth­
ers tum on, they will in tum attempt to tum on or off stilI others, and so on. (Each 

of these stages is called a "cycle.") 
To show how such a simple lAC network can be used as a clustering machine, 

35 cases were read into ORES ME, a commercial implementation of the lAC net­

work just described (Terra, 1993a, b, c). 
Typical cases are shown in Figure 7.1. (Notice that there is no need for the num­

ber of variables or items in each case to remain constant from case to case.) As the 
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pSI 
p38 
zero 
me 109 
fighter 
-1 
bI7 
b29 
heinkel 
bomber 
-1 
zero 
heinkei 
me 109 
axis 
-1 

Figure 7.1. Typical Cases for an lAC Network 
(-I indicates the end of a case) 

network reads these cases, it adjusts its connection strengths according to the 
Hebb rule discussed earlier. Once it has read all the cases, the final connection 
strengths or weights are arrayed in a square matrix that has the formal properties 
of a similarities matrix. This matrix can be treated statistically as if it were gener­
ated by any of a variety of conventional statistical methods. 

Figure 7.2 shows a perceptual map made by the Galileo program (Woelfel & 
Fink, 1980) based on the similarities matrix generated by the network. In this map, 
we can see that planes toward the top of the space tend to be Axis planes, and those 
at the bottom tend to be Allied planes. Those to the right of the screen tend to be 
fighters, and those to the left are bombers. 

In a typical conventional cluster analysis, the analyst would attempt to derive 
some criterion that would draw circles or spheroids or perhaps nonregular geomet­
ric surfaces that would separate the several stimuli into clusters. But the unsuper­
vised neural net works quite differently. Instead of developing bins filled with 
elements, the neural net may be queried. One can enter a stimuli or set of stimuli 
into the network, and it will respond with the most closely related stimuli. Table 
7.1 shows the results of entering various stimuli into the lAC. 

As Table 7.1 makes clear, the common practice of deriving an exhaustive set 
of clusters, with each element occurring in one and only one cluster (as we do in 
a typical dendogram or Venn Diagram) is not sufficiently flexible to represent 
the depth of information available from the neural network. The lAC network, 
for example, is able to show that the stimulus B 17, taken alone, is part of the cat­
egory of all the aircraft and indeed elicits the names of all the other aircraft and 
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Figure 7.2. Perceptual Map of Similarities Matrix 

Table 7.1 Inputs to the lAC Network (Left Column) and 
Its Responses (Right Column) 

Input 

Bomber 
Fighter 
Axis 
P38 
Axis, Fighter 
Axis, Bomber 
BI7 
PSI, BI7 

Output 

Bomber, BI7, B29, Heinkel 
Fighter, P38, PSI, Zero, ME109 
Axis, Zero, ME109, Heinkel 
Fighter, P38, PSI, Zero, MEI09, Heinkel 
Axis, Fighter, Zero, MEI09 
Axis, Bomber, Heinkel 
Bomber, P38, PSI, B17, B29, Heinkel 
P38, PSI, BI7, B29 

h t ry "Bomber" when input into CLUSTER. But when the same te~, 
t e ca ego II' d' f I 
B 17, is input into the network along with PSI, only the A Ie alrcra t are e IC-

ited. 
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Moreover, Table 7.1 also shows that the lAC network is completely nonhierar­
chical; one can enter an element and retrieve its category name (and the other 
members of the category), or one can enter the category name and retrieve its ele­
ments. Indeed, the network does not treat category names differently than it does 
element names, and there is no distinction between input and output nodes; all are 
simply "objects" or "stimuli" that are more or less similar to others. This is highly 
consistent with the complex nature of human attitudes. 

V. A BEHAVIORAL EXAMPLE 

So far the examples chosen have consisted only of "things" and their abstract 
attributes, but objects can be any object of attention at all, even behaviors. Because 
they are completely nonhierarchical, neural networks can cluster behaviors along 
with any other objects, so that the occurance of a large enough subset of objects 
that are linked to a behavior can elicit that behavior. In the present case, we show 
how certain attributes can be attached to car purchases. To show how such a net­
work might be used to predict vehicle choice, a simulation based on 54 cases of 
auto purchase behavior was run through ORESME. Each case consisted of 
selected demographic characteristics of a car buyer, along with the car purchased. 
Three typical cases are shown in Figure 7.3. 

After ORES ME read the 54 simulated cases, it was able to answer queries of 
several types: 3 

• What kind of cars would a professional, high-income male in his 50s consider? 
(Answer: Cadillac STS, Lincoln Mark VIII, Jeep Grand Cherokee, Pontiac 
Grand Am, Ford Bronco, Buick Riviera, Acura Legend) 

• What kind of person might consider buying a Chevrolet Cavalier? (Answer: 
twenties, married, high school education, low or middle income.) 

• What other cars might that same person consider? (Answer: Escort, used car, 
Civic, Neon) 

VI. CONCLUSION 

Neural networks provide a new and different way to think about attitudes and 
behaviors. Without contradicting the notion of an attitude as a predisposition to 
respond in a certain way to a certain object or situation, neural networks provide 
a convincing mechanism whereby behaviors can be "bundled into" a cluster or 
concept that includes objects, situations, and behaviors. Consistent with Mead's 
model, individuals encounter stimuli in recurrent situations, and the neurons that 
are activated in perceiving these stimuli become connected in such a way that the 
activation of a sufficient subset of them results in the activation of all. 

ATTITUDES AS NONHIERARCHICAL CLUSTERS 225 

TWENTIES 
FEMALE 
SINGLE 
HIGHSCHOOL 
LOWER MIDDLE 
PROBE 
-I 
TWENTIES 
MALE 
MARRIED 
3 CHILDREN 
LOW INCOME 
HIGHSCHOOL 
USED CAR 
-I 
MALE 
FIFTIES 
HIGH INCOME 
PROFESSIONAL 
SINGLE 
MARK VIII 
-I 

Figure 7.3. Typical Car Buyer Cases 
(-1 indicates the end of a case) 

This mechanism can completely explain the formation of "objects," which 
Mead considered to be sets of stimuli considered a unitary entity according to the 
interest ofthe perceiver. In the neural network, an object is simply a set of neurons 
sufficiently connected to one another that the activation of a sufficient subset will 
activate the remainder. Moreover, it can also explain the linkages among objects, 
some of which may be behaviors. Although research into the area is still very 
sketchy, neural networks are a very plausible mechanism for what has heretofore 
been a completely abstract concept. 

VII. NOTES 

I In what follows, clustering, classification, and categorization are considered synonyms. 
2 The term activation value refers in biological neurons to the rate at which the neuron is 

sending signals to other neurons to which it is connected. These signals are usually sent 
in the form ofrapidly cyclical spikes of electrical energy. 
The simulation included only brands of automobiles and a few demographic variables, so 
the lists are necessarily truncated. But the answers are indeed reflective of the cases in the 
simulated dataset and show the kinds of capability the unsupervised neural network has. 
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