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UULTIVARIATE AIJALYSIS AS SPATIAL
REPRESENTATION OF DISTANCES

Joseph Woelfel
iMichigan State University

This paper begins by arguing that the multivariate data matrix
with which all multivariate analysis begins may be seen as a
vector space in which each variable is represented as a vector
whose length is a function of its standard deviation and whose
location relative to all other vectors is given by the angles
(correlations) among the vectors. Different techniques of
multivariate analysis {noteably correlation, multiple regres-
sion, path analysis, factor analysis and multidimensional
scaling) are compared in terms of their ability to describe
and make salient varicus different aspects of this underlying
vector structure., The central argument is that classical
multidimensional scaling, a.technique seldom used by sociolo-
gists, offers clear-cut advantages over the other techniques
for the description of the structure of aggregate (cultural as
opposed to individual) data, particularly for the description
of large scale cultural processes which take place over time.
The paper argues that levels of descriptive accuracy and
measurement reliability in the range of physical science
research can be obtained by this technique.



The development of sophisticated tools of multivariate analysis
in sociology has essentially been a process of ceorrying over techniques
from other disciplines, principally psychology, economics, biology, and
of course, statistics. Vhile this haé saved considerable work, it some-
times has the disadvantage of providing the sociolosist with a fairly
disjointed collection of techniques whose communalities are ffequently
overlooked or even unknoim. The purpose of this paper is to noint out
the fundamental methematical and conceptual relationships among three
powefful multivariate techniquas: path analysis, factor analysis, and
somewnat less well known to sociologists, multidimensional scaling.

In the most fundamental sense, all measureﬁent, even in the social
sciences, is the measurement of comparative distances. If we find, for
example, that person A scores 5 on a political activism scale while person
B scores 7, we have essentially established a distance of two scale units
between A and B on the variable in question. When only one variable (such
as the political scale just mentioned) is involved, only distances among
persons can be ascertained, and very limited information is available.
When more than one variable is available (say, politics and income) it
becomes possible to establisihr distances not only among persons but also
among the variables themselves. Thus, in a very imprecise way, if we
find that the scores of a set of people are essentially similar on two

variables (i.e., the values of scores of individuals on the tuwo variables
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are in some sense correlated) we can say that the variables are similar
or "close" to each other. In the limiting case, if the scores of all
individuals were exactly the same across two variables, i.e., if person
i had an identical score on both variables, and that thié was true for
all n persons, then the two variables would be identical (coextensive).
Thus, most multivariate techniques essentially attempt to establish
relationships (distances) among variables on the basis of the scores of
individuals on those variables.

The ordinary data collected in the fypical multivariate analysis
constitutes an nxv data matrix, where the colums Cl,CQ...Cv represent
concepts or variables and the rows pl,p2...pn represents persons.. Thus,

the typical data matrix D can be essentiazlly seen

Cl : C2 R CV
P11 ¥y X1p vee X1e

D= P2 X201 22 .e- X2¢
Pp ®h1 *n2 e *ne

to represent a vector space Vc where each person is uniquely represented
as a vector in that space whose coordinates are given by his scores on
all the variables. Similarly the transpose (D') of that matrix will be
a vector space V,, wherein each variable is uniquely located in the space
as a vector whose coordinates aye given by its scores across all indi-
viduals. These vector spaces are very cumbersome, however, since these

matrices are usually quite large and unwieldy.



As a next step in reducing the complex data matrix to a comprehen-
sible size, it is usual to premultiply the matrix D by its transpose to

yield a new matrix:

p'D = 8§

where S (sometimes unfortunately called a "cross-products” matrix) is a

matrix of inner or scalar products such that any entry

Sij =pPp cosaij
where p; = the length of vector i
P = the length of vector j
%5 = the angle included between vectors i and i

Thus, any entry Eij in the matrix S represents the distance from varia?le
i_té an origin for the space times the distance of variable j from that
origin times the cosine of the angle between them. It is usually the
case, however, that data have heen collected on scales of different
range for differént-variables (i.e., variable 1 may be measured on a 5~
point likert scale; variable 2 may be age, etc.) and so the vector
lengths are usually artifacts of the déta collection procedure. Since
the length of any vecton Pi can be shown to be equal to oy /n, where

o; = the standard deviation of i then any entry sij = pipycostiy =
noicj cosey 5. Dividing through by no;d; for every cell ij will thus
standardize each vector to unit length. The resulting matrix, C, of

course, is a standard correlation matrix where any entry c,_=cosaij=
. 13

I’ij.



While this new matrix C is more parsimonious than the original
data matrix, clearly much information has already been lost {or, more
aptly, was never really present) since the true vector lengths are
unknowni. Consequently, while the angles between variable vectors are
known®, the distances between goncepts are lost and cannot be recovered
from this matrix. Since both factor analysis and path analysis usually
begin with the correlation matrix, this loss.is not trivial.

In spite of these losses, the data may not yvet be expressed as
parsimoniously as possible. It is very likely that not all the vectors
present in the matrix C are necessary to represent all the information
in the matrix--in fact, n points may always be scaled in at least n-l
space, and n-é space if the défa are monotone in form (Lingoes, 1971).
This process, as all the multivariate techniques discussed here, involves
the selection of some set of vectoré-smaller than the order of the matrix
C in terms of which the data may be described.

If we are interested in "explaining" or accounting for one or more
of the variables in the matrix by means of some subset of the other
variables (as in regression and path analysis}, then the vector of that
dependent variable is taken as a criterion. The variable is 'explained"
by measuring the net projections on the subset of independent vectors of
that predictor vector. Since the predictor vectors cannot be guaranteed
orthogonal to each other, the simple cosines of the correlation matrix

will not suffice, however, even though--in the standardized case

“Standardizing the variables in this fashion alsoc has the effect of
establishing a commoen origin for ali of the vectors at the centroid of
the space, a fact which will be important later.



discussed here--the projection of any vector i on any vector j is

given by the cosine of the angle aij' This is true since the projec-
tion of two correlated vectors i and j on a third vector k will overlap,
as Figure L illustrates. Consequently, what is requ.red is the set of
partial projections; i.e., the proportion of the dependent vector K which
is accounted for by the projection of j on k contrelling for the pro-
jection of i on k, and vice versa. Consequently, these values (b's, B's,
or partial correlations, depending upon the kind qf analysis) are
dependent on the angles between independent variable vectors. In the
case of simple partial regression, this latter information is not con-

veniently available.

FIGURE 1:
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Path analysis retrieves some of this information by selecting a
subset of several of the vectors in the matrix in their turn as depen-
dent variables, and consequently, some additional information about
the angles among vectors is added, but considerable information is
still lacking. To be sure, as correlations among residual variables

and other data are added, additional information becomes available,



but the presentation of this data in terns of quantitative partial
prﬁjections among correlated vectors in a space of unknown dimension-
ality cam be immensly confusing. Furthermore, althougn the path
diagrams accompanying pati analysis appear to be pictorial, they are

so only in a vague sense, since neither the lensths of the vectors nor
the angles among them are rendered to scale in these drawings.

Since path amalysis presants so fragmentary a picture of the latent
structure of the data, considerable prior information about the theoret-
ical relationships among the variables is absolutely requisite for
utilization of the technique. Ia fact, since the path analytic model is
so heavily identified, the path anélyst is essentially constructing a
ﬁathematical vector structure of his own prior to the analysis and
measuring the extent to whica the data conform to that structure. Should
tie correspondence be.poor, tiue range of possible alternative models the
investigator may then attempt, ‘even given all the %nformation provided by
path analysis, is usually overwhelming. Undoubtedly due to this fact,
coupled with the Imprecision of current sociological thzory, it is safe
to say that ne truly satisfactory path model has yet been presented in
the socioclogical literature, nor is one likely to be soon.

Factor analysis also attempts to describe the set of variable
vectors in terms of a smaller set of vectors, but rather than selecting
a subset of the original variasle vectors as its criterion set, it con-
structs new vectors deliberately structured to be as convenient as
possilble. BSssentially, factor analysis generates an orthonormal base

which spans the vector space definod brr th= variable vectors. Since
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tiie refarence vectors (factors) of this base are orthogonal, the length
of any vector is simply the sum of the squared loadinpgs of that variable
on eaci of the factors. In an important sense, Ffactor analysis is a
truly pictorial representation of the data, since a plot of the vari-
ables in the space spanned by the factors will represent the angles
among variables graphically and to scale. Since the factor solution is
under-identified, few constrain?s are imposed in tue data, and the
latent structure of the data is more clearly exposed. Unfortunately,
since the data have been standardized, the vector lengths'are unvailable,
however, and while the factor space reveals directions and angles, it is
not anple to represent the distances among the varisbles, and so impor-
tant information is still missing. Probably because only angles and
consequently directions are represented in the factor space, almost all
sociclogical uses of facfor analysis have focused upon the ideatifica-
tion of the 'meanings’ or “interpretations” of the directions in the
space; e.g., one attempts to determine whether moving up a given factor
increases one's political radicalism, etc. Consequently, the wholistic
. {

spatial properties of the factor space remain obscure, and attention is
usually directed exclusively to the individual factors, one by ohe.
This attempt to -name* tne factors frequently make sense, but there is
no reason why it must be so, and undoubtedly too much attention has been
focused on tas interpretation of factors.

iinltidimensional scating® wiile generally unfamiliar to most socio-

logists, can be seen as essentially an unstandardized factor amalysis,

“This discussion will confine itsclf mainly to fully metric multi-
dimensional scaling for aggregate data matrices, since this type of DS
is most likely the technique of choice for most sociological work.



with certain qualifications. As suggested =arlier, a basic reason for
“the sfandardization of the scalar products matri: in both paths and
factor analysis is that the vector lengths are generally artifacts of
tite scaling procedures utilized ia the data collection process. Thus,
the original “distances in tie raw data matrix are partly artifactual.
It is possible, however, and in fact aven easy, to obtain direct dis-
tance éstimates among variables which are not artifacts’, particularly
in the sociological case. The simplest technique is to ask respondents °
to estimate distances among concents directly after providing a suitable
standard unit of measure; e.g., "If X and Y are u uaits apart, how far
.apart are a and D?¥ This type instrumentation has been little used by
psychometricians, primarily since it requires a complex judgment from
thé respondent while providing virtually no structure for the scale,

and thus such estimates tend to be Highly unreliable for the individual
case, and so many more reliable, altiiough only ordinal, measures nave
been devised (Torgerson, 1257). The sociologist, however, since he is
usually interested in determining the relationships among variables
across many iadiviuuals, can casily obtain any level of reliability
desired by averaging each distance estimate across all members of the
sample and increasing nis sample size for eacl distance estimate until
satisfactory reliabilities arc obtained. Since thz mean distance :rill
converge on the populafion true score as n becomes large, the socio-
logist may take advantage of the fact that the scale mentioned is a

fully metric unbounded continuous ratic scale. Because all such dis-

tance estimates are averaged over the sample of vespondents, the law
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of large numbers assures tiat tas precision of mezasurewment attained is
essentially a direct function of the sample size. -

Procedurally, this dats collection technique yvields a tnree-dimen-
sional concepts x concepts X persons matrix wiichr iz averaged across the
n persons into a tuo-dimensional coacept % concepts square symmetric
matrix D where any entry dij represents the average distance between
concepts 1 and j as seen by tue respondents. This matrix D is trans-
forned routinely into a scalar preducts matrix 3, although generally it
is the practice of investigators to -double-center  tuis matrix by
establisihing an origin for tae space at tiae centroid of the distribu-~
tion. This can be done simply during tae construction of the scalar

products matrix, and the transformation is given by the equation:

wiilch is a straigntforward linear transformation which sacrifices none
of the information present in the original matrix D (Torgersom, 1958).

This new centroid scalar products matrix is such that any entry:

but it is important to recall that the vector longtus Dy and Pj are not
artifacts in this case, and so standardization of this matrix is neither
necessary nor desirable. Consequently, when this matrix 3+ is reduced
to its base by routine factorization (i.z., the application of any
standard eigen routine, suca aé principal axis or jacobi), the result is

a
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a factor matrix, F, whose columns Fl, F ...Fk are orthogonal vectors

2
with their origin at the centroid of the vector space spanned by T,
and vhere any entry Fij represents the projection (loading) of the ith

variable of the jth factor. This matrix has the further properties

such that:

k
p. = z-a?
£=1 if
where 3¢ © the loading of the ith variable on the fth factor. That
is, the square root of the sum of squared projections of the ith

variable across all the k factors equals the length of the vector of

the ith variable, and, of central concern:

k

iy = \; ffl(aif - e

)2

This last expression shows that the original distance matrix can be
completely recovered from the factor matrix with no loss of informa-
tion. It is even possible, based on the strength of two additional
but plausible assumptions, to recover still further information as
follows:

Almost all scaling techniques, whether uni- or multidimensional.
commonly share a single starting assumption; that is, that concepts
may be represented as points on a continuum or in a space. This
assumption, however, is almost certainly overly rigid in almost all

cirvcumstances. Vhat is more likely is that concepts or variables
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being scaled are representable more accurately by intervals on a
scale or Eggidns in a space. The color spectrum, for example, does
not represent colors as points on a scale, but intervals. iloreover,
some colors occupy larger intervals than others:; yellow, for example,
occupies a smaller interval of the color spectrum than blue. Further-
more, when respondents are asked to estimate the distances between

such concepts, it is likely that the distance between the near bound-

aries of the regions will be reported. As Figure 2 illustrates,

these (reported) surface-to-surface distances are related to the

center-to-center distances by the expression:

-~

d.. = d.. + r. + .
13 1} 1 3

where dij = qenter-to-center distance

i
T

13 (reported) surface-to-surface distance
r, = the radius of concept i
rj = the vadius of concept j

It may be argued, then, that all original distance estimates are sys-
teqatically too small by a variable amount. Furthermore, attempts to
fit these truncated distances into a real space will be thwarted. By
definition, a real space is one in which any three points i, i, and

k must satisfy the relatiom™.

45 * di 2 4

i+ d5 2 Y

A ¥ do 2 944

*1f one of these expressions is satisfied as an equality, the
points are collinear; if all are satisfied as equalities, the points
are coterminus.
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Vhen the point assumption is violated, as in the matrix D,
however, attempts to represent the distances among the surfaces of
the hyperspheres as distances among peints will gemerally fail to
satisfy the “triangle inequalities” coﬁstraints described above.

Such a matrix will not be positive, and factorization will yield
negative eipenrcoots signifying the projections of at least some of
the variable vectors inte imaginary space, that is, a space in whicﬁ
distances may be negative. Since we have attributed this failure of
the real space assumption to a shorteﬁing of the distances in the
space by a function of the sizes of the concepts scaled, what is
called for is a reduction of the imaginary space to zero by an expan-
sion of the real space. This can be done convenlently by subtracting
the largest negative eigenroot (i.e., the smallest root algebraically
or Amin) from every entry of the diaponal of the centroid scalar
products matrix B¥, since Amin equals the sum of the squared pro-
jections of all the concepts scaled on the largest negative factor
and hence represents the sequared vector length of the longest imag-
inary factor, while the diagonal entries of the matrix B¥ represent
the lengths of the vectors of all the scaled concepts in the space.

This operation:
B = B - Iimin

will yield an adjusted scalar products matrix B which is just positive
semidefinite (i.e., contains no negative latent roots). Since the off
diagenal cells.of B are the same as those of B¥, and since they

further represent:
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B,. = D.p.cosq, .
1] 1] 1]

where P; and p:.1 have been increased, this operation reduces cosa. . ,
thus increas%ag_aij and consequently every distance dij in the orig-
inal distance matrix D will be increased by a function of the cosine
of the angle uij‘ If the original distance matrix D is subtracted
from thg distance matrix 5 corresponding to the matrix ﬁ, the result-

ing matrix R can be seen to be a matrix of sums of radii corresponding

to the scalar equation:

T

H
a9}
£l
i
-+
H

oy, in matrix form:

o2
}
tj‘
[H
~

This matrix R is overidentified and easily solved for the indi-
viduval radii.

The advant;ges of such a technique are dramatiec. First, it
enables fully continuous true ratio scaling of any level of preci-
sion desired (accuracy equivalent to typical physical science measures
is not unrealistic). Secondly, no information contained in the data
need be lost, and in fact much latent information is uncovered.
Third, the sclution arrived at is fully graphic and, particularly
when the dimensionality of the resulting space is three or fewer, as
is very frequently the case, even visual. Of perhaps even greater
importance, given the application of a suitable rotation and trans-

lation routine®, is the clearout advantage of metric multidimensional

“Although rotation is not discussed here, several satisfactory
techniques and software- are available. See Cliff, 1968.
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scaling for studies involving time-ordered observations. Given a
series of observations over a set of known time periods, by the simple
subtraction of coordinates over time, motions through the spatial

manifold over time may be expressed as velocities, as given by:

K 2
. L (a,_. - b,
v =EJ;: f:l(.,lfl;f)
i~ Bt ~
B
where a; ¢ = the loading of the ith variable measured at time
+ one on the fth factor of the t, space
b.f = the loading of the ith variable measured at time
* two on the fth factor of the t2 space
di = the distance variable i has moved across time
At = the interval of time between measures
V = velocity

and, given multiple time periods, as accellerations: :

— _ AVi
Ay %

The chief focus of attention of the investigator, of course, can then
be put on the lawfulness of these movements through the space over
time. Should these movements prove lawful in their behavior, that
is, if they could be shown to move in some clearly patterned fashion,
theoretical development could proceed very swiftly due to the very
high level of measurement precision obtainable.

It would seem, in the light of these considerations, particularly
the plausibility of its principle assumptions, the highly quantitative

mathematical theoretical structure suited to these techniques, and its
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consaquently very high level of measurement precision, along with its
graphic qualities and particular suitability for time-ordered study of
aggregate cultural variables, techniques of multidimensional secaling--
particularly the metric or “eclassical’ model described in this paper,
deserve greatly increased attention by mathematically oriented socio-

logists and theorists,
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