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ilULTIVARIATE AiIALYSIS AS SPATIAL 
REPRESENTATIOH OF DISTANCES 

Joseph l'Ioelfel 
Hichigan State University 

This paper begins by arguing that the multivariate data matrix 
with which all multivariate analysis begins may be seen as a 
vector space in which each variable is represented as a vector 
whose length is a function .of its standard deviation and whose 
location relative to all other vectors is given by the angles 
(correlations) among the vectors. Different techniques of 
multivariate analysis (noteably correlation, multiple regres­
sion, path analysis, factor analysis and multidimensional 
scaling) are compared in terms of their ability to describe 
and make salient various different aspects of this underlying 
vector structure. The central argument is that classical,. ' 
multidimensional scaling, a technique seldom used by sociolo­
gists, offers clear-cut advantages over the other techniques 
for the description of the structure of aggregate (cultural as 
opposed to individual) data, particularly for the description 
of large scale cultural processes which take place over time. 
The paper argues that levels of descriptive accuracy and 
measurement reliability in the range of physical science 
research can be obtained by this technique. 
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The devel.opment .of s.ophisticated t.ools of multivariate analysis 

in sociology has essailtially been a process of co.rryinr: over techniques 

from .other disciplines, principally psych.ol.ogy, econ.omics, bi.ol.ogy, and 

of course, statistics. ~nlile t~lis ilD.S saved considerable Hork, it soree­

times has the disadvantage of pr.ovidinB the s.oci.ol.o~ist '1ith a fairly 

disjointed collecti.on .of techniques lIh.ose c.ommunaliti'3s are frequently 

.overl.o.oked .or even unkno:.n. The purp.ose .of this paper is t.o p.oint out 

the fundamental methematical &-id conceptual relati.onships among three 

pOl,erful multivariate techniqu3s: path analysis, fact.or analysis, and 

somet'l!lat less t'lel1 kU01·m to sociologists, multidimensional scaling. 

In the most fundamental sense, all measurement, even in the social 

sciences, is the measurement of comparative distances. If He find, for 

"xample, that pers.on i\ scores 5 on a political activism scale «hile pers.on 

jJ sc.ores 7, He have essentially established a distance of tHe scale units 

betHeen A and il on the variable in question. Hhen only one variable (such 

as the p.oli tical scale just menti.oned) is involved, .only distances all'.onr: 

pers.ons can be ascertained, and very limited informati.on is available. 

Hhen mere than .one variable is available (say, p.olitics and income) it 

becomes possible to establish distances not only among persons but also 

am.ong the variables tilemselves. Thus, in a very imprecise I·ray, if «e 

find that the scores .of a set of peopl" are essentially similar .on tHO 

variables (Le., the values .of scores of individuals .0" the. tHO variables 
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are in some sense correlated) we can say that the variables are similar 

or "close" to each other. In the limiting case, if the scores of all 

individuals were exactly the same across two variables, Le., if person 

i had an identical score on both variables, and that this was true for 

all n persons, ti1en the two variables would be identical (coextensive). 

Thus, most mUltivariate techniques essentially attempt to establish 

relationships (distances) among variables on the basis of the scores of 

individuals on those variables. 

The ordinary data collected in the typical multivariate analysis 

constitutes an ~x~ data matrix, where the columns CI'~ •.• Cv represent 

concepts or variables and the rows Pl,P2 •.• Pn represents persons. Thus, 

the typical data matrix D can be essentially seen 

CI C2 Cv 

Pl xll xl2 xlc 

D = P2 x2l ~2 x2c 

: 

Pn xnl "n2 xnc 

to represent a vector space Vc where each person is uniquely represented 

as a vector in that space whose coordinates are given by his scores on 

all the variables. Similarly the transpose (D') of that matrix will be 

a vector space Vn wherein each variable is uniquely located in the space 

as a vector whose coordinates are given by its scores across all indi-

viduals. These vector spaces are very cumbersome, however, since these 

matrices are usually quite large and unwieldy. 
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As a next step in ~ducing the complex data matrix to a comprehen-

sible size, it is usual to premultiply the matrix D by its transpose to 

yield a new matrix: 

DID = S 

where S (sometimes illlfortunately called a "cross-products" matrix) is a 

matrix of inner or scalar products such that any entry 

s .. = 
l.J 

where 

p P COS"'ij 

Pi = the 

Pj = the 

"'ij = the 

length of vector i 

length of vector i 

angle included between vectors i:. and i 

Thus, any entry ~j in the matrix S represents the distance from variable 

i:. to an origin for the space times the distance of variable i from that 

origin times the cosine of the angle between them. It is usually the 

case, however, that data have been collected on scales of different 

range for different· variables (i.e., variable 1 may be measured on a 5-

point likert scale; variable 2 may be age, etc.) and so the vector 

lengths are usually artifacts of the data collection procedure. Since 

the length of any vector p. can be shOt"" to be equal to ai /ii, where 
1. 

a i = the standard deviation of i:. then any entry Sij = PiPjCOS"'ij = 

Dividing through by nO' . a· for every cell i j will thus 
1. J 

standardize each vector to illlit length. The resulting matrix, C, of 

course, is a. standard correlation matrix where any entry C •• =cOS"'ij= 
l.J 
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\'lhile this ne", matrix C is more parsimonious than the original 

data matrix, clearly much information has already been lost (or, more 

aptly, was never really present) since the true vector lengths are 

unknown. Consequently, while the angles between variable vectors are 

known", the distances b"tween concepts are lost and cannot be recovered 

from this matrix. Since both factor analysis and path analysis usually 

begin with the correlation matrix, this loss. is not trivial. 

In spite of these losses, the data may not yet be expressed as 

parsimoniously as possible. It is very likely that not all the vectors 

present in the matrix C are necessary to represent all the information 

in the matrix--in fact, n points may always be scaled in at least n-l 

space, and n-2 space if the data are monotone in form (Lingoes, 1971). 

This process, as all the multivariate techniques discussed here, involves 

the selection of some set of vectors smaller than the order of the matrix 

C in terms of which the data may be described. 

If ;le are interested in "explaining" or accounting for one or more 

of the variables in the matrix by means of some subset of the other 

variables (as in regression and path analysis), then the vector of that 

dependent variable is taken as a criterion. The variable is "explained" 

by measuring the net projections on the subset of independent vectors of 

that predictor vector. Since the predictor vectors cannot be guaranteed 

orthogonal to each other, the simple ~osines of the correlation matrix 

will not suffice, however, even though--in the standardized case 

'·:Standardizing the variables in this fashion also has the effect of 
establishing a common or~g~n for all. of the vectors at the centroid of 
the space, a fact "'hich will be important later. 
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discussed here--the projection of any vector ~on any vector i is 

given by the cosine of the angle a... This is true since the projec­
~J 

tion of two correlated vectors i and j on a third vector k will overlap, 

as Figure .l illustrates. Consequently, uhat is requ:..red is the set of 

partial projections; i.e., the proportion of the dependent vector K which 

is accounted for by the projection of i on k controlling for the pro--=-

jection of i on k, and vice versa. Consequently, these values (£.'s, S's, 

or partial correlations, depending upon the kind of analysis) are 

dependen t on the angles betl<een independent variable vectors. In the 

case of simple partial regression, this latter information is not con-

veniently available. 

FIGURE 1: 
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Path analysis retrieves some of this information by selecting a 

subset of several of the vectors in the matrix in their turn as depen-

dent variables, and consequently, some additional information about 

the angles among vectors is added, but considerable information is 

still lacking. To be sure, as correlations among residual variables 

and other data are added, additional information becomes available, 



-0-

but tl1:! presentation of t:lis data in terr:s of quat""1titative partial 

projections among correlated vectors ia a space of unknrn·m dimension­

ality can be immensly confusing. Furthermore, althougil the pat" 

diagrams accompanying pa1:.1.1 analysis appear to be pictorial~ they are 

so only in a vague sense) since llei ther the len£:ths of the vectors nor 

the angles among them are rendered 'to scale in 'bese draHings. 

Since path analysis pres3nts so fragmentary a picture of the latent 

structure of the data, considerable prior information about the theoret­

ical relationships among the variables is absolutely requisite for 

utilizetion of tile technique. In fact, since t:,e path analytic model is 

so heavily identified, the paiOl analyst is essentially constructing a 

mathematical vector structure of his o>m prior to the a~alysis and 

measuring the extent to ,-"liC;1 tile data conform to that structure. Should 

the correspondence be poor, tae range of possible alternative models the 

investigator may then attempt, 'even given all the information provided by 

path analysis, is usually over<-,helming. Undoubtedly due to this fact, 

coupled ,d til the imprecision of current sociological thaory, it is safe 

to say that no truly satisfactory ~ath model has yet been presented in 

the sociological literature, nor is one likely to be soon. 

Factor analysis also attempts to describe the set of variable 

vectors in terms of a smaller set of vectors, but rather than selecting 

a subset of the original vari&>lc vectors as its criterion set, it con­

structs neH vectors delib,.~rately structured to be as convenient as 

possible. C:sselltially, factor analysis g"merates an orthonormal base 

uhich spans tne vector sl;)ac8 def':'n~d b· r -t:il= variable vectors. Since 
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t:,e reference vector'S (factors) of this base are orthogonal, the lengt:, 

of any vector is simply th'3 sum of the squared loadines of that variable 

on eacl! of the factors. In an ili1portan t sense, factor analysis is a 

truly pictorial represomtction of the data, since a plot of t"e vari-

ables in the space spanned by the factors ,fill represent the allgles 

among variables graphically and to scale. Since the factor solution is 

undcr-icleutified, feH constraints are imposed in t:le data~ and the 

latent structure of the data is li10I'Z clearly exposed. Unfortunately, 

since the data have been stcmderdized, the vector lenr,ths are unvailable, 

hO\ieVer, and. ~'/hilc the factor space reveals directions and angles~ it is 

not anle to represent the distances among the variables, and so i1i1por-

tant information is still missing. Probably because only angles and 

consequently directions are represented in the factor space, alli10st all 

sociological uses of factor a'1alysis have focused upon the ide.ltifica-

tion of the 'meanings" or "interpretations" of the directions in the 

space; e.g., one attempts to determine '\'Thetner movinp; up a giv8n factor 

increases one I s political radicalism, etc. Consequently, the uholistic 

spatial properties of the factor space remain obscure, and attention is 

usually directed exclusively to the individual factors, one by ohe. 

This attempt to "name" the factors fr8quently ma];e sense, but thore is 

:"10 reason ~·lhy it must be so, and ll..'I'1u.ountedly too muc:l attl3ntion nas been 

focused on t~l03 ii."!terpretatiol1 of factors. 

jultidimensional scalinni: ~lilile gGnerally lll1familiar to nost socio-

logists, can be seen as essentially an unstwldardized factor w1alysis, 

"This discussion "ill confine itself mainly to fully metric multi­
dimensional scaling for aggregate data matrices, since this type of ilDS 
is most likely the technique of choice for most sociological Hork. 
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\"rith cartain qualificatioliS. As suggested 8arliar, a basic reason for 

t:,e standardization of the scalar products matri:; in both paths al1d 

factor analysis is "that the vector lengths are generv.lly artifacts of 

tile scalin~ procedures utilized Ll t11d data collectioi.1 process. Thus, 

the original "distances"" in tile raH data matrix are partly artifactual. 

It is i?ossible ~ houever!) and in fact -:!ven easy, to olJtain direct dis­

tance estimates among variables T,orhich are ~ot artifacts', particularly 

in the sociological case. Th..:! simplest technique is to ask respondents 

to estimate distances among conce:)ts directly after 9roviding a suitable 

standard uuit of measure; e.r., ;:1f X and Yare U Uilits apart, hOH far 

apart are a and b?': This Dlpe instrumentation has been little used by 

psychometricians, primarily since it requires a complex judgment from 

the respondent ,.,hile providing virtually no structure for the scale, 

and thus such estimates t<mci to be highly unreliaole for the individual 

case, and so many more reliable, altil0Ugh only ordinal, measures ilave 

been devised (Torgerson, 1957). The sociologist, hOHever, since he is 

usually interested iil determining the relationships among variables 

across many iildiviuuals, can easily obtain any lev"l of reliability 

desired by averaging each distru,ce estimate across all members of the 

sample and increasii.1r; ilis sample size for eac:l distance estimate until 

satisfactory reliabilities arc obtained. Since th3 m.aan distance :Till 

converge on the population true score as ~ becorees large, the socio­

logist may take advantage of ti,e fact that ti,e scale mc>ntioned is a 

fully metric unbounded continuous ratio scale. J3ecause all such dis­

tance estimates are averaged over the sample of respondents,. th2 laH 
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of large Ilumber's assures til.].t t~1-2: pl"'ecision of m2ilSUreTJent attained is 

essentially a direct function of the sample> size" 

Procedurally, this data collection tecimique yields a tllree-dimen-

sional concepts x concepts x per'sons matrix Hhich is avera[.ed across the 

n persons into a "tuo-dimensional coacept x concepts square sytroiletric 

matri:< D HIlere any en try di j re"resents the average dis tance betHeen 

concepts i wld i as seen by tlle respond.ents. Tilis natrix D is trans-

formed routinely into a scalar products matri:< n, although generally it 

is the practice of investiGators to ·double-center t,lis matrix by 

establisiling an origin for t~le s)ace at t~le centroid of the distribu-

tion. This can be eione simply duriIlg t~le construction of the scalar 

products matrix, and the transformation is given by the equation: 

n n n n 
~ d2 E 2 l: l: 2 

;" 
1/2 (i=l ij j=ld ij i=l j=ld ij d

2 
ij) b: . = + -

l.] n n n 

\-1ilich is a straightfort-lard linear transformation Vlhich sacrifices none 

of the information present in tile original matrix J) (Torgerson, 1958)" 

This ilelf centroid scalar products matrix is such that any entry: 

but it is im~ortant to recall that t:,e vector l(m~t;ls ')" and p" are not 
- '" , ~ J 

artifacts in this case ~ and so standardization of t:lis matrix is neither 

necessary nor desirable. Consequently, Nhen this matrix J3~: is reduced 

to its base by routiae factorization (i. e", the application of any 

standard eigen routine, SUC,1 as principal axis or jacobi), the result is 

a 
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a factor matrix, F, <lhose columns Fl , F2 .•. Fk are orthogonal vectors 

with their origin at the centroid of the vector space spanned by F, 

and "here any entry F.. represents the projection (loading) of the ith 
~J -

variable of the ith factor. This matrix has the further properties 

such that: 

p. = );- a 

J 
k2 

~ f=l if 

where a
if 

= the loading of the ~th variable on the !th factor. That 

is, the square root of the sum of squared projections of the ~th 

variable across all the k factors equals the length of the vector of 

the ith variable, and, of central concern: 

d .• 
~J = J 

k 
); (a· f -

f=l 1. 

This last expression shm-/s that the original distance matrix can be 

completely recovered from the factor matrix <lith no loss of informa-

tion. It is even possible, based on the strength of two additional 

but plausible assumptions, to recover still further information as 

follows: 

Almost all scaling techniques, whether uni- or multidimensional" 

commonly share a single starting assumption; that is, that concepts 

may be represented as points on a continuum or in a space. This 

assumption, hOHever, is almost certainly overly rigid in almost all 

circumstances. ,iliat is more likely is that concepts Or variables 
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being scaled are representable more accurately by intervals on a 

scale or regions in a space. The color spectrum, for example, does 

not represent colors as points on a scale, but intervals. iloreover, 

some colors occupy larger intervals than others; yellow, for example, 

occupies a,smaller interval .of the color spectrum than blue. Further-

more, when respondents are asked to estimate the distances betNeen 

such concepts, it is likely that the distance between the near bound-

aries of the regions will be reported. As Figure 2 illustrates, 

these (reported) surface-to-surface distances are related to the 

center-to-center distances by the expression: 

d .. = d .. + r. + r. 
~J ~J ~ ) 

where d .. = center-to-center distance 
~J 

d .. = (reported) surface-to-surface distance 
~J 

r. 
~ 

= the radius of concept i 

r. = the l"'adius of concept i J 

It may be argued, then, that all original distance estimates are sys-

tematically too small by a variable amount. Furthermore, attempts to 

fit these trlmcated distances into a real space will be thwarted. By 

definition, a real space is one in which any three points ~> i, and 

k must satisfy the relation"'. 

d .. + dik > d'k 1) - ) 

d .. + d'k > d' k . ~) J - ~ 

dik + djk > d .. 
1) 

"=If one of these expressions is satisfied as an equality, the 
points are collinear; if all are satisfied as equalities, the points 
are coterminus. 
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!,)hen the point assumption is violated, as in the matrix D, 

hOHever, attempts to represent the distances among the surfaces of 

the. hyperspheres as distances among points will generally fail to 

satisfy the "trianr,le inequalities" constraints described above. 

Such a matrix Hill not be posi ti ve, and factorization "Till yield 

negative eigenroots signifying the projections of at least some of 

the variable vectors into ill'.aginary space, that is, a space in which 

distances may be negative. Since He have attributed this failure of 

the real space assumption to a shortening of the distances in the 

space by a function of the sizes of the concepts scaled, what is 

called for is a reduction of the imaginary space to zero by an expan­

sion of the real space. This can be done conveniently by subtracting 

the largest negative eigenroot (i.e., the smallest root algebraically 

or Amin) from every entry of the diagonal of the centroid scalar 

products matrix B';', since Amin equals the sum of the squared pro­

jections of all the concepts scaled on the largest negative factor 

and hence represents the sequared vector length of the longest imag­

inary factor, while the diagonal entries of the matrix B'" represent 

the lengths of the vectors of all the scaled concepts in the space. 

This operation: 

B = B'" - IAmin 

will yield an adjusted scalar products matrix B which is just positive 

semidefinite (Le" contains no negative latent roots). Since the off 

diagonal cells-,of B are the same as those of B:", and since they 

further represent: 
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B .. = P.p . cos", .. 
~J - ~ J ~J 

where p. and p. have been increased, this operation reduces cos", .. , 
~ J ~J 

thus increasing "' .. and consequently every distance d .. in the orig-
~J ~J 

inal distance matrix D will be increased by a function of the cosine 

of the angle "'ij' If the orir,inal distance Qatrix D is subtracted 

from the distance matrix D corresponding to the matrix B, the result-

ing matrix R can be seen to be a matrix of sums of radii corresponding 

to the scalar equation: 

d .. d .. = r. + r. 
~J ~J ~ J 

or, in matrix form: 

D - D = R 

This matrix R is overidentified and easily solved for the indi-

vidual radii. 

The advantages of such a technique are dramatic. First, it 

enables fully continuous true ratio scaling of any level of preci-

sion desired (accuracy equivalent to typical physical science measures 

is not unrealistic). Secondly, no information contained in the data 

need be lost, and in fact much latent information is uncovered. 

Third, the solution arrived at is fully graphic and, particularly 

when the dimensionality of the resulting space is three or fe"i'er) as 

is very frequently the case, even visual. Of perhaps even greater 

importance, given the application of a suitable rotation and trans-

lation routine'~" is the clearout advantage of r;:etric multidimensional 

"'Although rotation is not discussed here, several satisfactory 
techniques and software-are available. See Cliff, 1969. 
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scaling for studies involving time-ordered observations. Given a 

series of observations over a set of known time periods, by the simple 

subtraction of coordinates over time, motions through the spatial 

manifold over time may be expressed as velocities, as given by: 

t2 - tl 

"here aU = the loading of the ith variable measured 
one on the fth factor of the tl space 

bif = the loading of the ~th variable measured 
two on the Eth factor of the t2 space 

d. = the distance variable i has moved across 
~ 

lit = the interval of time between measures 

V = velocity 

and, given r.lUltiple time periods, as accellerations: 

A. 
~ 

at tine 

at time 

time 

The chief focus of attention of the investigator, of course, can then 

be put on the laHfulness of these movements through the space over 

time. Should these movenents prove laHful in their behavior, that 

is, if they could be shmm to move in some clearly patterned fashion, 

theoretical development could proceed very stfiftly due to the very 

high level of measurenent precision obtainable. 

It would seem, in the light of these considerations, particularly 

the plausibility of its principle assumptions, the highly quantitative 

mathematical theoretical structure suited to these techniques, and its 
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consequently very high level of measurement precision, along with its 

graphic qualities and particular suitability for time-ordered study of 

aggregate cultural variables, techniques of multidimensional scaling--

particularly the metric or "classical" r.lodel described in this paper, 

deserve greatly increased attention by mathematically oriented socio-

logists and theorists. 
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