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Although the first multidimensional (MDS) scaling algorithms developed 
were metric algorithms (Torgerson, 1958), the development of nonmetric 
methods (Shepard, 1966) led to a rapia and nearly complete abandonment 
of the metric procedures in favor of these newer algorithms. Recently, 
however, there has been a resurgence of interest in metric algorithms, 
particularly within the field of human communication research, where the 
use of metric procedures predominates. In order to understand this reversion 
to what many psychometricians believe to be an outdated technique it is 
necessary to understand the difficulties and philosophy which led to the 
increased interest in metric scaling. 

While there is little doubt that the development of nonmetric multidimen­
sional scaling algorithms represents a great advance in the methods available 
to the contemporary social scientist, there exist some areas of inquiry in 
which the metric scaling routines may offer certain advantages. This article 
discusses one such case, familiar to communication researchers in particular. 
The reader should understand at the outset that this article is not an 
argument against the use of nonmetric scaling, but rather a suggestion that, 
for a specific theory dealing with a specific set of research questions, metric 
multidimensional scaling, modified in certain important ways, provides 
useful results obtainable either only with great difficulty or not at all by 
nonmetric means. 

A THEORY OF CULTURAL PROCESSES 

For several years, many communication researchers have held a theory of 
intercultural processes which presents several special measurement problems 
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and possibilities (Woelfel and Fink, 1980). Briefly, this theory describes the 
belief system of any culture in terms of the average relationships thought to 
exist among the "objects" which a culture distinguishes within its environ­
ment. An "object" is defined as "anything that can be designed or referred 
to ... " (Blumer, 1966), and the relationships among these "objects" are 
defined specifically as their perceived dissimilarities. 

Multidimensional scaling is the preferred analytic vehicle within this 
theory, and each object is represented as a point in multidimensional space. 
Unlike typically psychometric practice, attributes within the space are not 
equated with the dimensions themselves, but rather each attribute is defined 
as an object and included as a point in the space. The extent to which any 
object embodies any attribute is given by the inverse of its distance from the 
attribute object in the space. On theoretical grounds, the dimensions of the 
space themselves are therefore of no substantive significance, but rather 
simply mathematically convenient reference vectors which simplify subse­
quent analyses (Woelfel and Fink, 1980; Woelfel and Danes, 1980). 

CULTURAL PROCESSES 

While some investigators maintain an interest simply in the structure of 
spaces such as those described above, by far the larger part of human 
communication scientists concern themselves with cultural processes, i.e., 
with the changes that take place within these spaces when different cultural 
groups communicate. Typical examples include marketing research studies, 
in which advertising messages modify the structure of a belief system in 
order to affect sales; studies of the changes in the structures of the belief 
systems of immigrants as a result of exposure to their host culture; and 
abstract experimental studies in which controlled "messages" are introduced 
into groups of people to determine the effects of such information inputs on 
processes within the space (Gillham and Woelfel, 1977; Woelfel and Saltiel, 
1978; Woelfel et aI., 1980a; Barnett et aI., 1976; Cody, 1980; Woelfel and 
Fink, 1980). 

The utility of the multidimensional scaling methodology for this theory is 
immediately apparent when it is realized that processes within the MDS 
configuration are always representable as motions of points in space. Since 
the mathematics of point motion is well developed, this constitutes an 
important advantage. Most recent research, in fact, has been concerned with 
the extent to which objects (points) in the space obey generalized forms of 
the Newtonian equation (Woelfel, 1978; Barnett and Kincaid, 1982) 

mx+Cx+kx=O (1) 

where m is the inertial mass (or resistance to acceleration) of any point, .t is 
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the acceleration of the point, C is the viscosity of the medium through which 
the point moves, x is the velocity of the point, k is the strength of 
equilibrium forces (restoring forces) which tend to move the point toward its 
starting position, and x is the position of the point. 

The main goals of this research are twofold: first, to determine the extent 
to which this equation fits cultural processes across a variety of domains and 
circumstances, and second, to determine the empirical values of the coeffi­
cients m, C and k in a variety of circumstances. 

Special Methodological Considerations 

A careful consideration of the details of this theory or of its utility and fit 
to data is beyond the scope of this article, and the reader is referred to 
Woelfel and Fink (1980) for a more thorough introduction. A bibliography 
of several dozen studies is available (Barnett, 1980). What is to the point 
here, however, is that the kinds of problem addressed within this theory 
make special demands on the methods available to the researcher, while 
making available some new opportunities. 

A Metric Measurement Model 

Solutions to the problems posed above make serious demands on data. 
First of all, since the equation in question specifically contains ratios of 
differential elements, data suitable to the theory must be at least approxi­
mately ratio-level at the outset. A second requirement, again resulting from 
the presence of ratios of differential elements, is that the data be measured 
quite precisely, first because the differentials themselves must be precise, and 
second because the propagation of error inherent in taking ratios makes 
special demands on the data. A final requirement, which is quite unusual in 
social scientific practice, is that investigators must be able to maintain a 
standard unit size across measurement sessions and across different studies if 
the coefficients of the equation are to have any meaning. These special 
requirements obviously preclude the use of ordinal scaling methods, or even 
of common categorical scales such as the Likert and semantic differential 
tyPes. 

Investigators in the area of communication research have attempted to 
meet these stringent requirements by means of a pairwise comparison 
magnitude estimation task. In general, this method takes any two objects A 
and B in the domain under study, assigns an arbitrary (but agreed upon) unit 
size to the distance between them, and asks respondents to estimate the 



472 

dissimilarities of all pairs of objects in the domain under study as ratios of 
this standard measure. In practice, this scale usually takes the form: "If A 
and Bare u units apart, how far apart are x and y?", where x varies between 
1 and k - 1, and y varies between x + 1 and k, where k is the number of 
objects in the study. 

Most psychometricians will be aware of the large random component to 
be expected in such a scaling task, but the theory in question defines its main 
variable of interest as the average of all such dissimilarities. As is well 
known, this averaging process has two important consequences. First, the 
random component can be reduced as a function of the square root of the 
sample size by averaging increasingly large number of observations into the 
means. Within limits of economy, there is no theoretical limit to the 
precision that can be obtained by these methods, so random variation is in 
this context only an economic problem. 

The second consequence of averaging, of course, is that individual varia­
tion is obscured, a fact of which researchers in the area are well aware. For 
certain problems, this obscuring of individual attributes and perceptions is 
unacceptable, as is well known, and individual differences models exist and 
have been discussed extensively elsewhere. For some purposes, however, the 
obscuring of individual differences is not only acceptable but desirable. One 
such purpose for which this consequence is particularly desirable is the 
investigation of the central tendencies of cultural belief systems (precisely 
the area the present theory was designed to approach, as suggested by 
Durkheim: 

Currents of opinion, with an intensity varying according to the time and place, impel 
certain groups either to more marriages, for example, or to more suicides, or to a higher or 
lower birthrate, etc .... Since each of these figures [i.e., average marriage, suicide and birth 
rates] contains all the individual cases indiscriminately, the individual circumstances [or, 
we may here say, attributes] which may have had a share in the productiQn of the 
phenomenon are neutralized... The average, then, expresses a certain state of the group 
mind (Durkheim, 1953, p. 10). 

It is neither right nor wrong, then, to average individual dissimilarities 
matrices, but rather each procedure describes a different level of the phe­
nomena considered. In an analysis of motivations for behavior at an individ­
ual psychological level, averaging of individual scores is a mistake. On the 
other hand, in investigations of the sociological behavior of aggregates of 
people or cultures, the dissimilarities matrix averaged over respondents is an 
appropriate basis. 
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MULTIDIMENSIONAL SCALING IN RIEMANN SPACE 

Although multidimensional scaling in Riemann space is unfamiliar to 
many outside the field of communication, communication researchers have 
administered scales of this type to tens of thousands of respondents in 
dozens of cultures on every continent (Barnett, 1980). Two characteristics of 
the data which usually result from these procedures are of interest here. 
First, the dissimilarities often violate the "triangle inequality" rule; that is, 
frequently two sides of a triangle formed of three points will not sum to at 
least the length of the third side. When this occurs, the latent roots 
(eigenvalues) of the scalar products matrix formed from these dissimilarities 
are both positive and negative. Since the eigenroots are the sums of the 
squares of the coordinates, negative eigenroots are associated with imaginary 
eigenvectors in the space. Forms which have both positive and negative 
eigenroots are called indefinite, and constitute a general Riemann space 
(Sokolnikoff, 1951). 

A second characteristic of these data is their precision. Often the average 
dissimilarities matrices exhibit uncertainties of less than 5 or 10%. In special 
cases, uncertainties of less than 1 % have been observed (Brandt, 1980). 

The combination of these two characteristics in the same data sets means 
that violations of the triangle inequality are in fact statistically significant, 
and that no transformation of the data within the typical 95 or 99% 
confidence intervals is sufficient to eliminate the imaginary eigenvectors. 
This fact is sufficient to rule out a casual application of nonmetric smooth­
ing procedures such as those embodied in the nonmetric multidimensional 
scaling programs on the assumption that such violations represent simply 
unreliability of measurement. 

RELIABILITY OF THE IMAGINARY EIGENVECTORS 

A simple way to determine whether the non-Euclidian components of a 
scaling solution are the result of random errors of measurement is to 
examine the correlations among the imaginary eigenvectors across random 
splits of a data set, or over time in time-ordered data sets. Since the 
orientation of the eigenvectors is arbitrary within each data set, comparison 
of multiple data sets requires some Procrustean rotation prior to such 
calculations. While the logic of Procrustean rotations has been examined 
carefully (Cliff, 1966; Schonemann, 1966; Lissitz et aI., 1979), most such 
examinations rest on the tacit assumption that all the eigenvectors to be 
rotated are real. When indefinite forms including both real and imaginary 
eigenvectors are considered, complete pairwise rotations of. the typical kind 
are not appropriate, since vector lengths do not remain invariant under such 
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transformations. Consider the Riemannian vector with coordinates 2, 2i. The 
length of this vector is given by 

IAI ==[2 - ·2 + 2;· -2] . - (I/2) == [4 + (-4)] .. (1/2) == 0 

The reader can easily verify that any rotation will change the length of the 
vector. Two strategies are possible. First, the normal trigonometric functions 
in the rotation equations can be replaced by hyperbolic trigonometric 
functions. Alternatively, the spaces may be partitioned into their real and 
imaginary parts and rotations performed separately within each subspace. 
This operation leaves the lengths of the vectors invariant, since each sub­
space is orthogonal to the other by definition. 

Cody (1980) scaled 13 descriptive attributes (competent, experienced,just, 
reliable, intelligent, ideal credible source, attractive, repulsive, unintelligent, 
unreliable, unjust, incompetent, inexperienced) by means of the procedures 
described above, and rotated the dimensions of each of the three treatment 
groups to give a least-squares best fit on a control group by means of the 
rotation technique just described. Even though the treatments (not described 
here) changed the configurations as expected, nonetheless the four largest 
imaginary eigenvectors correlated with their counterparts in the control 
group quite highly, as Table I shows. 

In another experiment, M. Woelfel (1978) measured the pairwise dissimi­
larities among a set of 11 concepts which were most frequently mentioned by 
43 undergraduate students as being associated with the women's movement, 
using the procedures described above. Several weeks later these students 
each engaged in a five minute discussion about the women's movement with 
two confederates, then filled out the original questionnaire a second time. 
Even though considerable time had elapsed and the students' measured 
stress levels during the discussion averaged ,...., 25 % . above normal, the two 
largest imaginary eigenvectors of this solution correlated 0.87 and 0.88 with 
their counterparts in the original results. 

TABLE I 

Correlations of Four Largest Imaginary Eigenvectors in Three Treatment Groups with their 
Counterparts in a Control Condition 

Dimension Group 1 Group 2 Group 3 Variance (%) 

13 0.26 0.97 0.90 -3.3 
14 0.63 0.96 0.95 -4.6 
15 0.86 0.93 0.93 -5.3 
16 0.83 0.99 0.98 -6.0 
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Barnett (1982) gathered longitudinal data from 20 subjects over 12 points 
in time. The objects scaled represented the candidates, major issues and 
political parties, together with a series of attributes and a self-point, during 
the 1976 Presidential election campaign in the U.S.A. There' was good reason 
to expect considerable true change among the various variables as the 
subjects' political attitudes changed during the campaign. We show he"re, 
however, that the largest imaginary dimension remained relatively stable 
during the experiment. 

An initial question of interest is whether this dimension accounts for a 
stable proportion of the variance. The answer appears to be that it does. The 
mean variance accounted for by the largest imaginary dimension was 25%, 
with a range of 11 %. The standard deviation about the mean was only 4.0 I, 
indicating a high degree of stability. Also, the largest imaginary dimension 
was the second largest dimension (in absolute terms) for the first seven 
measurement sessions, and the third largest for the last five sessions. If a 
scree test were performed on the absolute values of the eigenvalues, this 
dimension would always be retained by any standard interpretation (Barnett 
and Woelfel, 1979). 

The reliability of the loadings on this dimension was estimated by 
correlating the scale values at each point in time with the corresponding 
values at every other point in time. 

The lags among the measures were then examined. The correlations 
among the dimensions would be expected to decrease as the lag interval 
increased if the changes were due to true change rather than unreliability. 
This occurred. The mean correlation for each lag was regressed on the length 
of the lag. This resulted in a negative slope (b == -0.038, r == -0.278). The 
intercept (a == 0.603) provides perhaps the best available estimate of the 
"true" reliability of the loadings on the largest imaginary eigenvector, since, 
by interpolation, it represents the correlation of the eigenvector with itself at 
lag O. Once again, careful analysis rather clearly rules out the likelihood at 
least that the largest imaginary dimension is the result of random errors of 
measurement. 

These three examples are in no way atypical, but rather represent the 
common pattern of findings using MDS methods. Virtually all studies show 
the same pattern, and seem to demonstrate unambiguously that imaginary 
eigenvectors are not the result of random errors of measurement. 

TRANSFORMATIONS OF THE DATA 

Given that the Riemannian character of the resulting spaces is not always 
attributable to unreliability of measurement, there still remains the possibil­
ity that this outcome is the result of a systematic error in the measurement of 
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the dissimilarities. As Woelfel and Fink (1980) have argued, such an asser­
tion could be evaluated only if some knowledge of the "true" form of the 
dissimilarities could be obtained independent of measurements. Nonetheless, 
for the sake of demonstration it may temporarily be assumed that there is a 
strong reason to suspect that all cultural spaces are Euclidean, or that 
Euclidian outcomes are strongly preferred on some grounds. It is therefore, 
of interest to investigate the class of transformations which would render the 
data Euclidian prior to analysis. 

There are several mathematical procedures by which Riemannian data 
may be fitted into Euclidian space. One such method is to transform the 
data in such a way that the triangle inequalities are eliminated. The first such 
set of transformations are the monotonic transformations which form the 
basis of modem nonmetric multidimensional scaling algorithms. Used 
naively, such transformations seem inappropriate, since they are based on 
the assumption that the metric properties of the raw data are untrustworthy, 
and that only the ordinal properties of the data may be relied upon. As we 
have shown, the metric properties of data obtained in the ways discussed 
above are quite reliable, and may frequently be more robust than the ordin~l 
properties of the same data sets. Consider the "face" in Fig. 1. This Figure IS 

the first principal plane of a metric multidimensional scaling analysis (Galileo 
version 1.0) of the interpoint distances among the principal features of a 
human face. A face is a symmetric structure such that the distance, for 
example, between the left eye and the tip of the nose is the same as the that 
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Fig. 1. Galileo Face. 
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between the right eye and the tip of the nose. A normal face contains many 
such symmetries. 

Whenever these conditions are met in a data structure, the ordinal 
properties of the data will be less robust than their metric properties, since 
vanishingly small changes in the magnitudes of a few of the distances can 
make major changes in the rank orders of those same distances. These 
changes are often sufficient to render deceptive the most competent nonmet­
ric scaling programs. Figure 2, for example, illustrates the first principal 
plane of the TORSCA nonmetric solution for the same data set after 
including only a small (less than 5%) random component in the data. 

A second, less naive use of the nonmetric procedure involves producing a 
nonmetric solution and then examining the resulting "Shephard diagram" 
(see Fig. 3) to help estimate the form of the transforming function needed to 
eliminate the non-Euclidian characteristics from the data set. 

Figure 3 represents the "Shepard diagram" or scatter of the relation 
between the original dissimilarities matrices and the final distances obtained 
by using the TORSCA monotonic smoothing function to fit a set of ten 
concepts into three-dimensional Euclidian space. The ten concepts (walking, 

, sitting, strolling, running, sleeping, fighting, revolution~ marrying, singing~ 
practicing medicine) were assessed by 45 undergraduate sociology students 
at a large Midwestern university. An examination of Fig. 3 reveals that the 
TORSCA transformation is typically many-to-one; that is, it assigns the 
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Fig. 3. Distances versus Original Data for Ten Behaviors-initial results (see text) (TORSCA 
solution). 

same final value to several different initial values after transformation. Such 
transformations, while monotonic, have no inverses, and thus it is never 
possible to re-generate the original dissimilarities from the solution by any 
function whatever. While this may be acceptable for noisy data sets char­
acterized by large random components, it does not seem appropriate for 
precise data sets, and it makes it impossible to maintain a standard metric 
across measurement sessions and across studies. 

Figure 4 represents the relations among the same set of concepts as in 
Fig. 3 but for data obtained from the same subjects two weeks later. In the 
interval, classes were suspended owing to unrest during the Cambodia 
invasions and the killings of the Kent State students. Two of the concepts in 
the study (fighting and revolution) were relevant to the events on campus 
during the two-week period. Of greatest importance is that events on campus 
seem to have affected the overall structure of the space in such a way that a 
different transformation is required to fit the concepts into a Euclidian 
configuration. When data are arrayed in a time series, as are these, it seems 
clearly inappropriate to choose a transformation based on the configuration 
at only one point in time, or to choose different transformations for each 
time period. If the departures from the Euclidian configuration are the 
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consequence of simple unreliability, choosing a different transformation for 
each data set may not require much justification, but if this is not so (as it is 
not for this or the other data sets described in this paper), then the advocate 
of transformations to the Euclidian definite form faces the obligation of 
explaining why the "scaling bias" should change from one measurement 
session to another. 

Even if such transformations can be justified, they still' create problems. 
When coefficients for eqn. (I) are estimated after such many-to-one transfor­
mations, they are of no value to the communication researcher, since each 
coefficient is actually expressed in arbitrary units whose functional relation 
to the arbitrary units of any other study is completely unknown. 

A third possibility is to transform the data by a noniterative function. It is 
easy to show (although no demonstration is offered here) that violations of 
the triangle inequality rule can be transformed away by a monotonic 
function which foreshortens long distances, and similarly that such violations 
are exaggerated by any transformation which increases large distances rela­
tive to small. A transformation of the form 
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where s denotes the measured value, s' the "true" value, and c is a constant, 
can be shown to increase the number of violations of the triangle inequality 
and hence the number of imaginary eignevectors when c is greater than one, 
and to reduce these numbers when c is less than one. When c = 0, any 
configuration will converge on a unit hypersphere in Euclidian space. 

This approach too, however, has problems. First, large bodies of sound 
evidence, primarily from psychophysics, show unambiguously that human 
respondents already foreshorten long distances, particularly when their ex­
pression requires the use of fairly large numbers (Shinn, 1977). Gordon 
(1976) used the exact scaling method described here for nine groups each of 
-- 100 students, changing only the arbitrary standard and/or its modulus 
(numerical value assigned to the standard), and showed a slight logarithmic 
rolling-off of high scores when the scale used a small unit and required large 
numerical estimates (these data are discussed in some detail in Woelfel and 
Fink, 1980, Chap. 5). 

Application of the logarithmic transformation to the raw data, of course, 
is based on the assumption that the raw scores are systematically rather than 
randomly in error. But, as the evidence shows, since such systematic errors 
are almost certain to be in the form of logarithmic foreshortening of long 
distances, which in fact attenuates rather than creates triangle inequality 
violations, still further foreshortening seems highly undesirable. 

Several other such transformations are known to the writers. These 
include additive models, such as Attneave's additive constant, in which the 
smallest constant which can be added to every measured dissimilarity to 
eliminate the non-Euclidian components of the space is found by an iterative 
method (Torgerson, 1958), and Lingoes' "lambda min" solution, in which 
the largest (absolute) latent root is subtracted from each root, and the 
eigenvectors renormalized to the new eigenvectors (Lingoes, personal corre­
spondence). 

The former method is based on the assumption that the scales of measure­
ment are interval-level scales, with apparent zero points differing from the 
true zero points by the value of the additive constant. All non-Euclidian 
characteristics of the data are seen as consequences of the arbitrary zero 
point on the scale. It is difficult to see the application of this reasoning to the 
scales discussed in the present article, since the meaning of the zero point­
that there is no difference at all between A and B-on the direct magnitude 
estimation scales is fairly unambiguous. Moreover, both of these procedures 
suffer from the same problem as do the logarithmic and nonmetric mono­
tonic transformations when applied to longitudinal data sets. In the case of 
the additive constant method, it is necessary to inquire as to why the limen 
or zero point should move systematically between measurement sessions, and 
in the latter case (Lingoes' lambda min method), to establish why the 
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transforming function needed to eliminate the non-Euclidian characteristics 
should shift between measurement sessions. 

The last transformation discussed here is one considered by the authors 
for several years in the early 1970's. This method consists of relaxing the 
assumption that each stimulus item be considered a point in space, and 
assuming rather that each may in fact be considered a hypersphere of radius 
r(i), where the r(i)'s are fitted to the stimuli so as to be the smallest possible 
which render the data set completely Euclidian (operationally, so that the 
largest negative eigenroot vanishes). While this remains an intriguing possi­
bility to the writers, a completely satisfactory mathematical solution to the 
problem is not known to us, and the method also suffers from the same 
problem as do the other transformations when applied to time-ordered data 
sets, although in this case the problem takes the form of finding a meaning­
ful theory about why different radii need to be assigned to each object scaled 
in each data set. 

In general, the major problem lies with theory. Many transformations 
which can project Riemannian surfaces onto Euclidian surfaces are known, 
but in general there is no theory which can lend a substantive interpretation 
to any of them. 

Should theoretical grounds for such a transformation be found in the 
future (at present we are aware of none), it is important to note that not only 
the form of the transformation but the actual coefficients of the transform­
ing equation have to be the same for every measurement session if the 
empirical coefficients of eqn. (I) are to be meaningful across studies and 
across investigators. 

This last objection is far more serious than it first appears. Typically, 
when dealing with a data set which exhibits non-Euclidian characteristics, an 
tnitial impulse is to find some empirical transformation which will eliminate 
them. But what of the case when an investigator is faced with several data 
sets of which each exhibits some non-Euclidian elements, particularly when a 
.different transformation is required to make each set Euclidian? If each data 
set is transformed by a different function, how can they be compared 
meaningfully afterward? And even if the investigator is sufficiently careful 
(and lucky!) to find a single transformation which eliminates the non­
Euclidian characteristics from all data sets at once, how will comparisons be 
made with data sets analyzed by different investigators? (It is simple enough 
to show that each of the data sets described earlier in this article requires a 
unique transformation function to eliminate its non-Euclidian components. 

Yet another strategy for avoiding the Riemannian configuration involves 
embedding the Riemann surface in a larger (i.e., higher-dimensional) 
Euclidian space. Following Sokolnikoff (1951), an estimate of the dimen­
sionality of the required Euclidian space can be obtained as follows. Con-
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sider the Riemann space R n generated by 

ds 2 =gijdxi dxj (i,j=l, ... ,n) (2) 

An estimate of the dimensionality m of the Euclidian manifold in which Rn 
is embedded can be obtained by considering the transformation T~ which 
maps the points of the Riemann space into Euclidian space: 

T:ya=ya(xl, ... ,xn
) (0::= 1, ... ,n) 

Suppose that 

dyQdya=gijdxidx j (i,j= 1, ... ,n) 

Now, 

dya = (ayQ laxi) dx i 

Inserting this into eqn. (2) gives [n(n + 1)]/2 differential equations of the 
form 

a ya a ya laxi ax j = gij 

Since this set of differential equations will, in general, always be solvable if 
m > [n + (n + 1)]/2 differential equations exist, a Riemannian space of n 
dimensions may always be mapped into a Euclidian space of m dimensions. 

This procedure can be made free of the problem of handling multiple 
time-ordered data sets if m is chosen sufficiently large to accommodate the 
largest Riemannian space ever encountered. All data sets ever scaled, then, 
can always be fitted into this "superspace" without the need for a different 
transformation for each data set. 

The problem with this solution, however, is that the dimensionality of 
the Euclidian space required will commonly be much greater than the 
dimensionality of the Riemann space itself-often sufficiently large to strain 
the computational capacity of even the largest of computing facilities. 
Although it may afford psychological comfort to the investigator, this 
solution offers no advantages to the practical scientist. 

AD HOC ADJUSTMENTS 

Each of the procedures described above could be considered "automatic" 
in one sense, in that the functions could be found by some constrained 
generator of monotonic functions operating with respect to a specified 
criterion (e.g., that the largest negative eigenroot should be zero). Once 
encoded into software, such an algorithm could be set to transform the data 
automatically, although such a procedure would still be subject to the 
difficulties discussed above. One last alternative might be to examine each 
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data set, and the metric solutions generated from it, to determine whether 
some clustering of the concepts (or of the subjects) might lead to a new 
Euclidian solution in a reasonably small and computable space. Or, perhaps, 
substantive interpretations for each of the eigenvectors might be sought; 
those imaginary dimensions in which meaningful clustering did not occur, or 
for which no interpretation could be found, might be eliminated. New 
distance matrices might be generated from these "tailored" spaces and 
further analyses undertaken. While such procedures might work in some 
cases, there is good reason to consider them both inappropriate and infeasi­
ble for the type of problems typically studied by the communication worker. 

First, as most researchers (including the present writers) are well aware, 
many researchers attach substantive significance to the dimensions of multi­
dimensional scaling solutions. Some MDS algorithms, for example INDS­
CAL, depend on such an interpretation for their viability (although even 
INDSCAL allows dimensions to be nonorthogonal to deal with correlated 
attributes). Not all researchers accept this type of interpretation, however. 
Rosenberg and Sedlak (1972), for example, argued persuasively that attri­
butes are frequently mutually dependent (correlated), which both rules out 
the possibility that they might correspond to the orthogonal dimensions of 
an MDS solution, and reduces the likelihood that every dimension of the 
solution will be interpretable. Furthermore, they presented sound empirical 
evidence that the number of attributes which may lie in any n-dimensional 
subspace may greatly exceed n, and that they may lie at oblique angles to the 
n dimensions. Many scaling algorithms themselves (such as PROFIT in the 
Bell Labs package) rely on this assumption, an assumption that is over­
whelmingly supported by data (Rosenberg and Sedlak, 1972). 

Not only may attributes fail to correspond to the dimensions in an MDS 
solution (thus ruling out the necessity that all "genuine" dimensions be 
interpretable), but several researchers (Cody et aI., 1976; Barnett and Woel­
fel, 1979; Woelfel and Danes, 1980; Woelfel and Fink, 1980) have presented 
both theoretical and data-based evidence that attributes o~ght not be thought 
of as "lines" or dimensions at all. The most common theory held by 
communication researchers recommends that each of the end points of what 
Were formerly considered linear attributes (e.g., "good-bad") be scaled as 
points or "monopoles" in the space, so that the extent to which any object in 
the space exhibits an attribute is given by the inverse of its distance from the 
point which represents the end point of that attribute. An object is "good", 
therefore, insofar as it is close to the point "good" in the space, and "bad" 
insofar as it is close to the point "bad". Such a solution seems inherently 
superior to the idea that attributes should be represented as line segments, 
since it leaves open the possibility that an object might increase or decrease 
the extent to which it manifests any quality without simultaneously increas-
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ing or decreasing the extent to which it manifests the "opposite" quality. 
Changing the chemical composition of a substance, for example, might 
increase the extent to which it is "sweet" without decreasing the extent to 
which it is "sour". If such a view is true, then the dimensions of an MDS 
space need not. be substantively interpretable. 

Woelfel and Fink (1980) have shown, for example, that for two samples 
(undergraduate students and professional network analysts) for which data 
were scaled, the concepts good, bad and evil form not a line segment but a 
triangle. This can be interpreted either as meaning that "good" constitutes 
an end point for two attribute dimensions (good-evil and good-bad), or as 
support for the view that each of the three attribute adjectives (good, evil, 
bad) ought to be scaled as a monopole. . 

Should the older theory that attributes must be representable as lines in 
the space be true, then this newer model would. empirically yield that 
outcome in any case. Empirical evidence available from the works cited 
above confirms our own experience, and leads us to believe that the notion 
that the dimensions of an MDS space ought to be interpretable as attributes 
in their own right is unsupportable. 

Even if this ad hoc approach might be made to work, there are strong 
reasons why it would be neither feasible nor desirable in a typical communi­
cation research study. Often the MDS literature leads one to suspect that the 
attainment of a final MDS configuration is a terminal goal of a research 
project. This is decidedly untrue of communication research, in which the 
MDS solution is simply an intermediate step toward the analysis of longitu­
dinal communication or cultural processes. Typical is the study of the 1980 
U.S. Presidential election currently in progress. The goal of the study is to 
determine convergences and divergences among candidates, issues, and the 
position of the "average voter" during the election campaign in response to 
events within the campaign. To achieve this, a complex multistaged research 
process was required. First, in-depth interviews were conducted with ran­
domly chosen voters in New York and Hawaii. The issues and terms most 
frequently mentioned in these interviews were included on a magnitude 
estimation questionnaire involving pairwise comparison of 14 items. This 
questionnaire was then administered to a fresh random sample of -- 25 
voters in Hawaii and New York every day for six weeks prior to the election 
(and for two weeks past the election for the New York voters). 

Next, a metric MDS solution for each separate day at each site (New 
York and Hawaii) was constructed; each of these was rotated to a 
least-squares best fit on the preceding day's configuration. It is at this point, 
and only at this point, that the main analysis begins. This main analysis 
consists of a mathematical description of the trajectories of the candidates, 
issues and other terms through the space. These trajectories are then plotted 
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against media and other events during the campaign. 
Since we are here concerned with a time series of up to 42 distinct MDS 

configurations, clearly it is not possible to deal with each of these configura­
tions as if it were a separate entity. If each space is treated differently from 
each other space, the resulting analysis of the entire time series is rendered 
meaningless. Nor is it possible to treat the data for each separate site 
differently, and then make sense of the subsequent comparisons. On prag­
matic grounds alone, ad hoc adjustment of each separate space would make 
a project like this economically unmanageable. 

INTERPRETING THE RIEMANN SPACE 

While the investigations reported here have shown that it is possible to 
transform away the Riemannian characteristics of spaces generated by 
averaged magnitude estimation scaling methods based on pairwise compari­
son, each of the methods considered has both practical and theoretical 
disadvantages. A clear alternative is simply to deal with the Riemannian 
configuration on its own terms, and to apply appropriate non-Euclidian 
mathematical operations to the resulting indefinite mathematical form. One 
advantage of so doing, as already mentioned, is the saving in computer core 
required for analysis; another is the ability to save the original metric of the 
scaling method, an essential feature for addressing the fundamental theoreti­
cal questions important to communication scientists. A third advantage is 
the fact that plausible theoretical interpretations for the Riemannian char­
acter of the data sets may be found. 

Two such interpretations are presented here. First, there is reason to 
suspect that non-Euclidian outcomes ought to be expected when objects or 
stimuli from diverse domains of meaning are scaled in the same measure­
ment session. Second, there are theoretical reasons why similar non-Euclidian 
manifestations ought to be expected when objects or stimuli are ambiguous 
or uncertain to the subjects, particularly when subjects may be thought to 
hold "dissonant" cognitions, following Heider (1958), Festinger (1957), and 
others. 

Cross-Domain Scaling 
As Fillenbaum and Rappaport (1971, p. 3) suggested, the "meaning of a 

lexical item is a function of the set of meaning relations which hold between 
that item and other items in the same domain". A domain may be defined as 
a semantic field or a structurally rehited coherent set sharing some meaning 
properties or having some common class referents (Fillenbaum and Rappa­
port, 1971). But how does one define the boundaries of the domain to be 
scaled? In certain cases, the scaled items may be limited to a Hwell specified" 
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domain, such as kinship names (Fillenbaum and Rappaport, 1971), or 
animal names (Henley, 1969). This limitation of the domain follows the 
approach advocated by Osgood (1968, p. 132), to " ... restrict the semantic 
domain under study to a pure type of system ... ". This is not always possible 
or desirable, however: 

... [This] solution would appear undesirable since, insofar as many domains are not pure 
systems, such a maxim would restrict our investigations to a subset of "neat" cases, and 
rule out of consideration many important structured domains" (Fillenbaum and Rappa­
port, 1971, pp. 239-240). 

Osgood's advice, moreover, is often at odds with well-established and 
plausible methods for choosing the stimuli that are to be included in scaling 
tasks. Woelfel et al. (1980b) suggest, for example, that MDS studies of 
applied campaigns, such as election campaigns or marketing studies, should 
conduct preliminary interviews with samples drawn from the population of 
interest, asking the respondents to describe the topic freely and at length, 
and include the most frequently mentioned attributes in the scaling instru­
ment for the main study. Often the resulting list includes elements from 
different domains, such as person descriptors, political parties, issues, and so 
forth. The conscientious investigator cannot abide simultaneously by both 
this advice and Osgood's, since using the most frequently mentioned attri­
butes will often require the scaling of objects from multiple domains, yet 
attempting to maintain a "pure" scaling task will frequently require leaving 
out some of the most frequently mentioned attributes. It would.seem, then, 
that it is often necessary and even desirable to scale elements drawn from 
multiple domains on the same instrument. 

Not only do the authors cited above show an awareness of the non­
Euclidian results obtained by scaling items from multiple domains, but there 
exist both theoretical reasons and empirical evidence suggesting that such 
results are to be expected. Concerning the theoretical grounds, we are aware 
of no theory current in the social sciences which asserts seriously and 
without qualification that human subjects have anything approaching a full 
awareness and understanding of their own cognitive structures and mental 
processes. That subjects are frequently unaware of the exact (or even 
general) meanings of scaling stimuli is commonplace knowledge to the 
experienced researcher. Moreover, it is eminently plausible to suspect that 
subjects are most imprecise in their understanding of the meaning relations 
among objects drawn from widely different domains of meaning. That such 
a situation is likely to result in Riemannian outcomes is not only plausible, 
but can be shown empirically. 

I t is possible to examine data gathered from a single domain and data 
taken from more than one domain in order to see whether sets of the latter 
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type have greater variance on the imaginary dimensions. Accordingly, data 
were gathered on the dissimilarities among ten political stimuli (a coherent 
set) at three points in time (Barnett et aI., 1976). The ratio of the imaginary 
variance to the variance explained by the real dimensions was respectively 
0.38, 0.24 and 0.27 for the three measurement sessions. Similarly, data were 
collected on the dissimilarities among ten mass-media items ( a coherent set) 
from four different groups. The same ratio for these four groups was 
respectively 0.27, 0.27, 0.19 and 0.21 (Barnett, 1977). Harkins (1978) had 
subjects scale eight items from a well-defined domain of mass-media terms. 
He found a ratio of 0.22. Barnett (1982), on the other hand, gathered data 
from more than one domain. The mean ratio of imaginary to real variance 
was 0.50. 

These results seem to confirm what theorists have suggested previously, 
namely that human subjects seem to place multidomain stimuli within 
generalized Riemann spaces rather than Euclidian configurations. Both 
relations wi thin domains and those across domains may be examined by 
calculating the numbers of triangle inequality violations for samples of 
stimuli from within a single domain and for samples of stimuli taken from 
more than one domain. This may be done easily with the aid of the 
generalized equation of Pythagoras. 

In cases where cos 0 < 1.0, the relations may be considered Euclidian. 
When cos 0 > 1.0, the triangle inequality relation is violated and generalized 
Riemannian structures result. 

Randomly selected samples (both across time and from within or between 
domains) of three stimuli were taken from the Barnett (1982) data set 
described above (N == 56). In those cases where the three stimuli were 
members of the same set, 84% of the relations were Euclidian. In those cases 
where the three stimuli came from more than one domain, only 14% of the 
relations were Euclidian. These results differ significantly from chance, with 
X2 == 32.45, d.f. == 1, P < 0.001. 

Taken collectively, the above results present a very strong prima facie case 
that Riemannian manifolds ought to be expected whe"n scaling stimuli across 
multiple meaning-domains. This means that cultural spaces may well be 
globally Riemannian even though locally Euclidian. Since the scaling of 
items from multiple domains is often either unavoidable or desirable, there 
are clearly circumstances under which Riemannian configurations are both 
theoretically and empirically the expected outcome. 

SCALING DISSONANT COGNITIONS 

A second, equally interesting, set of circumstances exist in which Rieman­
I nian relations are to be expected on theoretical grounds. Many theorists, in 
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particular Heider (1958), Newcomb (1953), Festinger (1957) and Osgood et 
al. (1957), have suggested that human subjects ought frequently to find 
themselves embedded in dissonant relations with the objects of their experi­
ence. Consider the inconsistent freindship relation, where A likes B, A does 
not like C, and B likes C. Translating into dissimilarities relations, it might 
be said that A is close to B, B is close to C, but A and C are distant from 
each other. This can easily be translated into a violation of the triangle 
inequality relation for this triad. Similarly, for communication data, consider 
the case in which A and B communicate frequently (i.e., are "close to" one 
another), Band C communicate frequently, and A and C never or infre­
quently communicate (Barnett, 1979). If frequencies of communication are 
taken (as they commonly are) as the inverses of the "communication 
distances" or "network distances" among these three, then again triangle 
inequality violati~ns and Riemannian structures are to be expected on 
theoretical grounds. 

Such cases occur frequently for straightforward dissimilarities-data as 
well. Fink et al. (1975), for example, reported that a random sample of 
university students saw large distances between themselves and the rich, but 
small dissimilari ties between the rich and big business and between them­
selves and big business. Each of these relations, considered pairwise, is 
interpretable and conforms with qualitative impressions taken from inter­
view data, but taken together they result in triangle inequality violations and 
Riemannian structure. 

Such inconsistencies are meaningful both theoretically and pragmatically. 
Scaling algorithms which eliminate them eliminate meaningful and useful 
information about the cognitive structures of the sample. Some theorists 
(Woelfel and Fink, 1980; Barnett and Kincaid, 1982) hypothesize in fact that 
communication among members of populations having dissonant (i.e., 
Riemannian) cognitive structures ought to lead these structures to move 
toward consistency as a consequence of communication. Any scaling method 
which in the act of scaling eliminated the inconsistencies would make 
empirical investigation of this hypothesis impossible. Even granting that a 
comparison of the transforming functions needed to eliminate the non­
Euclidian characteristics from each data set might be attempted, such a 
comparison would itself be a very difficult undertaking whose mechanics are 
themselves not well understood. By contrast, the simple comparisons il­
lustrated above are very easy to make, and render empirical investigation of 
such hypotheses relatively easy. 

Summary and Conclusions 

Although many discussions of multidimensional scaling are mathematical 
and abstract, most have been guided by a general set of goals whose roots lie 
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in psychology. These goals typically focus on the representation of the 
cognitive structures of individual persons. The extension of MDS procedures 
beyond the boundaries of psychology, however, has led to goals quite 
different from those psychological concerns. Communication researchers in 
particular often make use of MDS procedures for the analysis of cultural 
processes. These new goals pose special problems and offer new opportuni­
ties to the MDS user. In particular, concentration on aggregates has led to an 
increase in the use of ratio-level scaling procedures and metric as opposed to 
nonmetric algorithms. This combination of measurement and analysis proce­
dures tends to yield indefinite mathematical forms or Riemann spaces. 

The present paper has shown that the Riemannian character of the spatial 
configurations resulting from these methods cannot be attributed solely to 
unreliability of measurement. Although several transformations which could 
eliminate the Riemannian characteristics from these solutions have been 
discussed, none of them is completely free of problems of its own. While the 
writers by no means advocate abandoning the investigation of these types of 
transformations, on the other hand none of them is so compelling as to rule 
out the simple expedient of dealing with the Riemannian configurations as 
they are. In fact, such early research as exists seems to indicate that this 
expedient may focus needed attention on inconsistencies in cultural belief 
patterns which might go unnoticed by routine nonmetric MDS analyses. 
While alternative methods might well exist (including some of the procedures 
discussed in the present article), the application of Riemannian mathemati­
cal analyses to the Riemann spaces which result from metric MDS of 
ratio-scaled aggregated data seems sufficiently fruitful to warrant increased 
mathematical and experimental investigation. 

References 

Barnett, G.A. (1977). "Linguistic relativity: the role of the bilingual", pp. 475-494, in B.D. 
Ruben, ed., Communication Yearbook 1. New Brunswick, NJ: Transaction Books. 

Barnett, G.A. (1979). "Spatial modelling of social networks with applications to the diffusion 
process", Annual Meeting of the International Communication Association, Philadelphia. 
May 1979. 

Barnett, G.A. (1980). "Bibliography of Galileo materials", paper presented to the Interna­
tional Communication Association, Acapulco, May 198Q (available on request from the 
author). 

Barnett, G.A. (1982). "A multidimensional analysis of the 1976 presidential campaign: an 
over time study", paper presented at the annual Meeting of the International Communica­
tion Association, Chicago, 1978; Communication Quarterly, New Brunswick, NJ: Transac­
tion Books. 

Barnett, G.A. and Kincaid, D.L. (1982). "A mathematical theory of cultural convergence'" 
International and Intercultural Communication Annual VII, New Brunswick, NJ: Transac­
tion Books. 



490 

Barnett, G.A. and Woelfel, J. (1979). "On the dimensionality of psychological processes", 
Quality and Quantity 13: 215-232. 

Barnett, G.A., Serota, K. and Taylor, J. (1976). "Campaign communication and attitude 
change: a multidimensional analysis", Human Communication Research 2: 227-244. 

Blumer, H. (1966). "Commentary and debate", American Journal of Sociology 71: 535-547. 
Brandt, D.R. (1980). "A systematic approach to the measurement of dominance in human 

face-to-face interaction", Communication Quarterly 28: 31-43. 
Cliff, N. (1966). Orthogonal rotation to congruence", Psychornetrika 31: 33-42. 
Cliff, N. and Young, F. (1966). "Multidimensional scaling in the study of a set", American 

Psychology 21: 707. 
Cody, M. (1980). "The validity of experimentally induced motions of public figures in a 

multidimensional scaling configuration", in D. Nimmo, ed., Communication Yearbook IV. 
New Brunswick, NJ: Transaction Books. 

Cody, M., Marlier, J. and Woelfel, J. (1976). "An application of the multiple attribute 
measurement model: measurements and manipulation of source credibility", Paper pre­
sented at the Annual Meeting of the Mathematical Psychology Group, Lafayette, IN, 1976. 

Durkheim, E. (trans. G. Simpson) (1953). Elementary Forms of the Religious Life. New York: 
Free Press. 

Festinger, L. (1957). A Theory of Cognitive Dissonance. Evanston, IL: Row Peterson. 
Fillenbaum, S. and Rappaport, A. (1971). Structures in the Subjective Lexicon. New York: 

Academic Press. 
Fink, E., Serota, L.K., Woelfel, J. and Noell, J. (1975). "Communication, ideology and 

political behaviour: a multidimensional analysis", paper presented to the Political Com­
munication Division of the International Communication Association, Chicago, April 1975. 

Gillham, J. and Woelfel, J. (1977). "The Galileo system of measurement", Human Communi­
cation Research 3. 

Harkins, C. (1978). "The multi-image user: a diffusion of innovation investigation", unpub­
lished Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY. 

Heider, F. (1958). The Psychology of Interpersonal Relations. New York: Wiley. 
Henley, N. (1969). "Psychological study of the semantics of animal terms". Journal of Verbal 

Learning and Verbal Behavior 8: 176-184. 
Lissitz, T., Schonemann, P. and Lingoes, J. (1979). "A solution to the weighted Procrustes 

problem in which the transformation is in agreement with the loss function", Phychometrika 
21: 1-17. 

Newcomb, T.M. (1953). "An approach to the study of communication acts", Psychological 
Review 60: 393-404. 

Osgood, C. (1968). Interpersonal Verbs and Interpersonal Behavior. Technical Report No. 64. 
Urbana: Institute of Communication Research, University of Illinois. 

Osgood, c., Tannenbaum, P. and Suci, G. (1957). The Measurement of Meaning, Urbana: 
University of Illinois Press. 

Piesko, H. (1970). "Multidimensional scaling in Riemann space", unpublished Ph.D. disserta­
tion, University of Illinois, Urbana. 

Rosenberg. M. and Sedlak, A. (1972). "Structure representations of perceived personality trait 
relationships", in A.K. Romney, R.N. Shephard and S.B. Nerlove, eds., Multidimensional 
Scaling: Theory and Applications in the Behavioral Sciences. Vol. 2: Applications. New 
York: Seminar Press. 

Schonemann. P. (1966). "A generalized solution of the Orthogonal Procrustes problem", 
Psychometrika 31: 1-10. 

Shepard. R. (1966). "Metric structures in ordinal data", Journal of Mathematical Psychology 3: 
287-3J5. 



491 

Shepard, R. (1974). "Representation of structures in similarity data: problems and prospects", 
Psychometrika 39: 373-422. 

Sokolnikoff, I.S. (1951). Tensor analysis, Theory and Applications. New York: Wiley. 
Torgerson, W. (1958). Theory and Methods of Scaling. New York: Wiley. 
Woelfel, J.D. and Danes, J. (1980). "Multidimensional scaling models for communication 

research", in P. Monge and J. Capella, eds., Multivariate Techniques in Human Communi­
cation Research. New York: Academic Press. 

Woelfel, J. and Fink, E.L. (1980). The Measurement of Communication Processes: Galileo 
Theory and Method. New York: Academic Press. 

Woelfel, J. and Saltiel, J. (1978). "Cognitive processes as motions in a multidimensional 
space", in F. Casimir, ed., International and Intercultural Communication. New York: 
University Press. 

Woelfel, J., Cody, M., Gillham, J. and Holmes, R. (1980a). "Basic premises of attitude change 
theory", Human Communication Research 6: 153-168. 

Woelfel, J., Holmes, R., Kincaid, D.L. and Barnett, G. (1980b). How to do a Galileo study. 
New York: Good Books. 

Woelfel, M. (1978). "An experimental analysis of the effects of variance in influence, lev~l of 
influence and attitude change on stress", unpublished M.A. thesis, Michigan State Umver­
sity, East Lansing, MI. 




