PRECISE PROCEDURES FOR LONGITUDINAL NETWORK ANALYSIS 1

George A. Barnett

INTRODUCTION

A social network may be defined by a N x N matrix S, where N
equals the number of nodes or interacting units in the network.
The value in each cell (sj4) is some measured attribute of the
relationship or link betweén nodes i and j. In communication
research, the value is generally the frequency of communication
often weighted by the perceived importance. While there exist a
variety of techniques for analyzing this matrix, sociometry
(Moreno, 1934), matrix manipulations (Forsyth & Katz, 1946;
Festinger, 1949), network analysis (Pitts, 1979; Richards
[NEGOPY], 1974; Breiger, et al. [CONCOR], 1975; Bernard &
Killworth [CATIJ}, 1973; Alba {[COMPLT], 1973) and
multidimensional scaling (Goldstein, et al., 1966; Jones & Young,
1972; Lankford, 1974), none of these methods is clearly superior
for the analysis of sociometric data and all are incapable of
precisely describing changes in networks over time. A wvariant of
metric multidimensional scaling, the Galileo Systemgy (Woelfel &
Fink, 1980), however, may be used to precisely analyze over-time
changes in social networks (Gillham & Woelfel, 1977), and to
provide insights into the nature of networks (Barnett, 1979).

This chapter discusses the theoretical necessity for using
these procedures for the analysis of network data and
methodological problems associated with this approach. One
problem is the specification of a mathematical transformation to
change frequency of interaction data into social distances, the
proper form for multidimensional scaling. It will then examine
the American air traffic network to demonstrate the utility of
the method for longitudinal network analysis.

Although network analysis has been used to describe social
and organizational structure for nearly fifty years, little
progress has _been made in developing procedures to study change
in networks.? Changes in social networks may be caused by
external factors such as technological innovations or information
made available to the members of the system, or internal factors,
such as the growth of an organization or the departure of a
member from the system. The critical point is that social
networks do change over time.

Rogers and Kincaid (1980) report few over time studies in
their review of network analysis. Among the reported studies
were, Lloyd-Kolin’s investigation of the evolution of 11 R & D
organizations into an interconnected system over a nine month
period; Stern’s (1979) historical study of the NCAA; Freeman and
Freeman’s (1979) study of computer-based teleconferencing among
network scholars; and, Morett-Lopez’s (1979) research on network
stability in Monterrey, Mexico’s slums.

Jones and Young conducted a longitudinal field experiment to
describe the dimensions of interpersonal perception, change in
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perceived social structure and the relationship of interpersonal
perception to behavior for members of an intact group. The
results indicated that members of the group used three dimensions
in interpersonal perception, status, professional interests and
political persuasion. Overtime, the salience of these dimensions
changed based upon the individuals roles and status. Similarily,
Gillham and Woelfel (1977) examined the changes in the
perceptions of a university faculty over three points in time by
students, staff and the faculty themselves. They found that
perceptions of the faculty were relatively stable but changed for
the subjects as a function of the information the subijects
received about them.

Burt and Lin (1977) developed a structural equation model to
describe change in network structure over a 95 year period in the
United States. Performing a content analysis of archival records
(the front page of the New York Times), they formed sociomatrices
based on the structural equivalence of actor categories averaged
over a four year period. They reported that over time, greater
attention was paid to members of government agencies and less to
individuals connected to political parties or business leaders.

Roberts and O’Reilly (1978) examined the communication
networks within three interrelated high-technology Navy
organizations at two points in time. The first was three months
after the unit was established and the second was a year later.
Using Richard’s (1974) procedures, they found that the ratio of
participants to isolates was roughly consistant, the limited
change which occurred was in the direction from isol-~te to
participant, and that network integration increased over time.
The number of group members and groups were greater at time two.
While group size remained relatively stable, the interconnections
among the groups increased.

Rice (1982) studied research groups involved in a natior wide
computer conferencing system over a 24 month period. He found
that the information flows between the groups were reciprocal and
that the description of the network became more stable over the
two year conference. Also, the groups occupied well-defined
information-based network roles, with task groups remaining
isolates, nontask groups becoming information-rich and the
service/random groups remaining carriers or brokers of
information.

The dynamic nature of social networks has been studied only
infrequently for two major reasons. One, the data generally
gathered by social scientists has predominately been cross-
sectional rather than longitudinal (Rogers & Kincaid, 1980).

And, two, procedures to analyze over time network data have not
been generally available. This chapter presents such a
methodology, the Galileo Systemqy of metric multidimensional
scaling. It was designed to study the changes in distance
matrices (like S) under a variety of theoretical constraints.

THEORY

Implicit to any theory of networks is the notion of
"betweenness". That is, one node (a) lies between two others (b
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& ¢) such that information passed between nodes b and ¢ almost
always goes through node a. B and ¢ rarely communicate directly.
This would be the case if node a were a central switching
facility (Schwartz, 1977) or a liaison in a social organization
(Rogers & Agarwala-Rogers, 1976). 1In terms of the communication
distances among the nodes, a is very close to b and ¢, but b and
c are quite distant from one another. These distances may be
considered the inverse or reciprocal of the frequency of the use
of link between the nodes.

Distances among nodes may be represented by a matrix like the

one below:

oUW
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The diagonal contains zeros because the distance between any node
and itself is zero by definition.

If matrix S were converted to Cartesian coordinates (through
multidimensional scaling% bg finding the eigenvector of its
scalar products matrix S one would flnd that the eigenroots
{eigenvalues) or characterlstlc roots of STS would include one
negative root. The reason for this is that the triangle formed
from the links of the abc triad cannot exist in a two-dimensional
Euclidean space.4 The abc triangle has two very short legs (ab &
ac) and one very long one (bc). As a result, the sum of the
triangle’s angles exceeds 180°. Thus, this triad cannot be
accurately described without a complex dimension (one with a
negative root, to foreshorten the bc leg.

Network data generally are not Euclidean, i.e., at least one
of the characteristic roots of STS may be imaginary. The reason
is that if any three nodes vary in centrality, the points must
violate the rule of triangular inequalities. The exception is a
completely and approximently equivalent interconnected network.
Any three points (nodes) may be said to form an Euclidean
triangle if and only if the sum of the square of any two of the
distances among them does not exceed the third squared (Tversky,
1979). In the example above, bc must be less than or equal to
21/2, if this triad is to exist in an Euclidean space. For any
set of N nodes in matrix S, those nodes will be represented in
Euclidean configuration if and only if the =raingular
inequalities rule is not violated for any triple of points. The
result is a Riemann manifold represented by a coordinate system
in which some of the dimensions are imaginury. They have
negative eigenroots. The locations of the non-Euclidean
relations among the points may be determined by equation 1.

dzjk = dzij + dzik - 2dij d;k cos ® 1
In the case where, cos © <£1.0, the relations may be considered
Euclidean. Where, cos ©® >1.0, the relatiors among the three
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nodes may be considered non-Euclidean or Riemannian. It is from
this latter case that complex eigenroots result (Woelfel &
Barnett, 1982).

While multidimensional scaling has frequently been applied to
analyze social networks (Goldstein, et al., 1966; Jones & Young,
1972; Lankford, 1974; Breiger, et al., 1975; Gillham & Woelfel,
1977; Freeman & Freeman, 1979; Romney & Faust, 1982), less than
satisfactory results have been reported (Lankford, 1974; Breiger,
et al., 1975). One reason for this may be the failure to take
into account the imaginary dimensions.

Historically, psychometricians have treated the variance on
these dimensions as error variance to be removed through the
addition of an additive constant (Messick & Abelson, 1956) or
adjusted away by some non-metric algorthim (Shepard, 1962a, b;
Kurskal, 1964a, b). They assumed that social and psychological
structures were Euclidean and that any departure from a positive
semi-definite scalar products matrix (STS), one with only
positive values in its eigenvector, was caused exclusively by
measurement error. Thus, these dimensions were ignored and
inadequate descriptions of sociometric data resulted.
Additionally, the stated purpose for using multidimensional
scaling was to identify some underlying structure, such as, the
dimensions by which a group was differentiated. This resulted in
the removal of true variance. The imaginary variance went first.
However, since the underlying dimensions are only orthonormal
reference vectors upon which no meaning may be directly
attributed, all dimensions should be retained for a‘'y further
analysis, including those with negative eigenroots (Barnett &
Woelfel, 1979). Attribution of meaning to the dimensions may be
made only be regressing «n attribute vector through the
multidimensional space.

Recently, however, psychometricians have become interected in
multidimensional scaling in Rie - inn swace (Pieszko, 1975; Lindman
& Caell, 1978). One algorithm exist which allows for the
analysis of all the dimensions in an multidimensional manifold
including those with negative roots. It is known as Galileo (tm)
(Woelfel, et al., 1976). The computer program takes ratio level
measurements of discrepancies (distance or dissimilarities), such
as matrix 8, and converts it to an ad;usted scalar products
matrix following Torgerson (1958), (S°S). It thgn finds that
matrix’s eigenroots and Cartesian coordinates (S§) for all
dimensions, real and imaginary, through Jacobi’s method (Van de
Geer, 1971).

One reason for performing network analysis has been clique or
group identification. Two procedures may perform this function,
cluster analysis or Qultiple discriminant analysis (MDA). Once
the Riemann space (S ) has been obtained, the researcher may
perform a cluster analysis to identify groupings within the
space. An alternative technique, when groups’ identification is
known or hypothesized, is MDA (Jones & Young, 1972). 1In this
case, group membership may be considered the dependent variable
and the dimensions (real and imaginary) the predictor variables.

Change in network structure may be examined by repeating the
measurement phase and transforming the data for each point in
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time into multidimensional spaces. To compare several points in
time (or several different groups at the same time), the spaces
must be translated to a common origin and rotated to a least
squares best fit which minimizes the departure from congruence
among the spaces. Change in the position of the nodes may be
calculated by subtracting the coordinate values across time.
From these change scores trajectories of motion can be determined
to describe the relative changes in the structure. With these
measured velocities (the rate of change over time) and
accelerations future network structure can be predicted
accurately (Barnett, 1979; Barnett & Kincaid, 1983).

When no additional information about the relative stability
of the nodes exists, the ordinary least square procedure may be
applied. When knowledge about the nodes stability or what the
position of certain ones have changed is known, alternative
rotational algorithms exist (Woelfel, et al., 1979, Chapter 12) .
The ordinary least squares procedures has the effect of
overestimating some changes while underestimating others. This
may lead to erroneous conclusions. The alternative rotational
schemes use theoretical or "extra" information which simplifies
the apparent motion. Since it is independent of the coordinate
values, it may be treated as invariant under rotation and
translation of the coordinates.

One alternative scheme rotates only the theoretical stable
points to a least squares best fit and then incorporates the
dynamic ones into the new coordinate system. This is similar to
the procedure used in astronomy where the position of fixed stars
are used to measure the motion of other stellar bodies. Another
procedure weights the individual points, and then rotates to a
weighted solution. One of these schemes should be used when
manipulating the relational patterns of a nodes toward a subset
of nodes. In that case, the manipulated nodes are considered
dynamic and the unmanipulated ones are treated as theoretically
stable reference points (Woelfel, et al., 1980; Barnett, 1980).
The algorithms necessary to perform the rotations described here
are unique to the Galileoqy computer program and make it possible
to precisely study change in networks.

Previous research with Galileo has shown that the loadings on
the imaginary dimensions are reliable both across groups and over
time (Woelfel & Barnett, 1982). Also, theoretically valid
predictions have been made using the imaginary dimensions.
Woelfel and Barnett (1982) have shown that the dimensions with
negative roots result when pair comparisons among three or more
stimuli concepts are made from two or more semantic domains or
when the stimuli are incongruent or produce a psychological state
of inbalance. Xrumhansl (1978) examined psychological non-
Euclieanisms in geometric models and found that violations of
triangular inequalities resulted in similarity data when the
scaled points varied greatly in their relative density. In
spaces where the points were distributed homogenously, there was
a greater tendency for the space to be Euclidean.

Barnett (1979) found that imaginary dimensions resulted in
the analysis of social networks. Using the frequency of air
traffic for the year ending June 30, 1978, among 16 American
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cities, he found that 40.2% of the total variance in S8* was
accounted for by those characteristic roots of STS which were
negative. A warp factor of 3.04 was obtained. Warp is the ratio
of the sum of all the eigenroots (positive and negative) to the
sum of the positve roots. Thus, it provides a convenient measure
of the degree to which the space is non-euclidean. A warp of 1.0
indicates an Euclidean space. An examination of the three
dimensions (2 real and 1 imaginary) which accounted for the
greatest proportion of the variance (70.8%) and would have been
retained by a scree test (Barnett & Woelfel, 1979), suggested the
the frequency of air traffic may be described as a star-type
network with tendencies toward a tree-type configuration,
although among the nodes at the center (hub) a mesh-type network
was the best descriptive label (Schwartz, 1977). 1In order to
travel by airplane from New Orleans to Phoenix or Seattle, the
nodes at the periphery or the points of the star, one had to go
through one of the central switching nodes, such as, Chicago.
Also, the results suggested that Atlanta served as a tree node or
an intermediate switching facility, taking passengers from New
Orleans and Miami and rerouting their travel prior to reaching
the more central nodes. BAmong the central nodes (Chicago,
Cleveland, Dallas, Denver, New York, Los Angeles, San Francisco
and Washington), each node had a direct link to each other.

This study clearly demonstrated the utility of using a
multidimensional scaling algorithm which is not restricted to an
Euclidean solution. That study provided only a static
description and did not demonstrate change over tim¢ in social
networks. This chapter will focus on the longitudinal nature of
the air traffic network.

The utility of any scientific methodology is ultimately its
ability to precisely describe attributes of phenomena and t» make
accurate predictions of the values of these attributes at fiture
points in time. These predictiors are based upon and evaluated
against the prevailing theories about the phenomena for which the
methodology was developed. These descriptions should lead to
parsimonious "law like" relations between measured attributes of
the phenomena and other variables which are theoretically
related. Generally, these are in the form of mathematical
functions.

Since the proposed procedures are designed for the study of
change in networks, it is necessary to demonstrate that they
provide a description of the change in simple "law like"
functions. They should convary with those exogenous factors
which predict change in network structure. Such factors might be
the physical relations and similarity among the nodes, economic
conditions, the diffusion of new communication technologies,
population growth and mobility and changes within the network
itself.

Up to this point, this chapter has discussed the theoretical
necessity of using a non-Euclidean multidimensional scaling
algorithm to describe social networks. It has been suggested
that any new methodology’s utility should be evaluated against
theoretical criteria. It will empirically demonstrate these
procedures using data on the frequency of air traffic between
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1968 and 1981. Change in this network will be described by simple
law like functions which will be analyzed with respect to certain
theoretical criteria. In this manner the utility of this

methodology for the study of network change will be demonstrated.

AN EMPIRICAL EXAMPLE
The Data

Data from the annual "Domestic Origin-Destination Survey of
Airline passenger Traffic" conducted by the U.S. Civil
Aeronautics Board (CAB), in cooperation with the Certified Route
Air Carriers and the Air Transport Association of America, were
analyzed.6 A single survey is conducted continuously on the basis
of a 10% sample. Flight coupons surrendered by passengers upon
boarding are the source of the survey data. The universe
consists of all coupons lifted by participating air carriers.
Coupons are selected for analysis with ticket serial numbers
ending in zero. These data are compiled by the CAB. They edit
the data, remove inconsistancies, such as duplication of the same
flight by different carriers, itineraries in which no destination
is reported, single coupons in which the origin and destination
are the same, and itineraries were the carrier(s) into and out of
an intermediate point do not serve the city. Also removed from
the data base are records which fail compute editing tests. 1In
all, less than two per cent of the total reported number of
flights are dropped from the survey.

Thirty-one cities (SMSA) with a_population greater than one
million were selected as the nodes.’ They are listed in Table 1.
In 1980, these 31 cities had a cumulative population of
94,092,000 or 43.5% of the total U.S. population. The links in
sociomatrix, S, were the number of passengers outbound plus
inbound (nondirectional) between the cities.® Since
nondirectional relations were used, S was symmetrical (Sij
sji)- The diagonal contained zeros. Fourteen separate
sdciomatrices were created, one for each year, 1968 to 1981.

This made it possible to examine the change in the air traffic
network for this time frame.

These data were obtained on microfilm and were first
converted to hard copy. To insure a minimum of coding error,
both Sij and ss; were recorded. Then, they were checked for
equivalénce. aomplete sociomatrices were entered into the
computer for analysis. Again, Si4 and s+4 were compared and
corrections made. In summary, thé data Consisted of 14
symmetrical sociomatrices containing the frequency of
nondirectional passenger air traffic among 31 U.S. cities.

These data are not subject to the criticzism of being self-
report network data (Bernard & Killworth, 1277). Rather than
being reports of travel by individuals, they are object, coming
from used airline tickets. Further, they are aggregate data
(Rogers & Kincaid, 1980). The nodes (unit of analysis) in this
study are cities, not individuals. Thus, the interaction among
aggregates were examined. Danowski (1980) and Barnett (1982a)
have shown that the process of aggregating to the group level
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filters out a significant amount of measurement error because
random individual variation and the effects of other
communication channels are randomized. The result is stable
estimates of the state of the system which improves the ability
to describe the underlying mathematical relations among the
variables of interest. 1In this case, a 10% sample of air traffic
is sufficiently large to assume that random perturbations
contribute little to the description of the network.

TRANSFORMING MATRICES OF FREQUENCY TO COMMUNICATION DISTANCES

The first step in the analysis of these data is to transform
the matrices of frequency of interaction to (S) to matrices of
social distance (S8’) to conform with the Galileoqy framework.
The goal of this operation is to assign the smallest value to the
greatest frequency. The logic is that the greater the
interaction between two nodes, the closer they are in a spatial
network. The problem is what functional transformation to apply.
Two candidates are the inverse and the reciprocal.
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TABLE 1

Selected Cities (SMSA) And Populations (1980)

1. Atlanta 2,010,000
2. Baltimore 2,166,000

3. Boston 3,443,000

4, Buffalo 1,241,000
5. Chicago 7,697,000

6. Cincinnati 1,651,000
7. Cleveland 2,830,000

8. Columbus 1,089,000

9. Dallas-Fort Worth 2,964,000
10. Denver 1,615,000
11. Detroit 4,606,000
12. Fort Lauderdale-Hollywood (SCSA) 1,006,000
13. Houston 3,086,000
14. Indianapolis 1,162,000
15. Kansas City 1,322,000
16. Los Angeles 11,439,000
17. Miami (without Fort Lauderdale) 1,573,000
18. Milwaukee 1,566,000
19. Minneapolis-St. Paul 2,109,000
20. New Orleans 1,184,000
21. New York City 16,065,000
22. Philadelphia 5,530,000
23. Phoenix 1,612,000
24. Pittsburg 2,261,000
25. Portland 1,236,000
26. San Diego 1,860,000
27. San Francisco-Oakland-San Jose 4,845,000
28. Seattle 2,084,000
29. St. Louis 2,345,000
30. Tampa-St. Petersburg 1,550,000
31. Washington 3,045,000

TOTAL POPULATION OF CITIES
TOTAL POPULATION OF U.S. 1980
Sample contains 43.5% of Total

94,092,000

225,479,000

The frequencies may be subtracted from an arbitrarily large
constant, k, where k is greater than the largest value of Siq-
s’;; equals zero. This function is presented as equation 2.

S = K-S 2

In this case, S’ is a linear function of 8. It has the
advantage of simplicity. One problem is what value to assign to
k. According to Woelfel (personal correspondence), k should have
theoretical significance. For example, k could be set egual to
the maximum possible number of passengers flying among the nodes.
If a "convenient" value, rather than a theoretical one, is
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chosen, the rank of matrix S becomes arbitrary and therefore no
meaning can be attributed to the warp of the network space. This
is not a major problem if network spaces are compared relative to
one another rather than to some external criterion. However, as
k becomes larger, the transformation has the effect of adding an
"additive constant", which alters the dimensionality (rank) of
the network space. This problem may be exasperated when the same
constant is applied to several different sociomatrices. What may
be the "most convenient" constant for one point in time may not
be appropriate for another.

To analyze the air traffic network, k was set equal to the
maximum frequency in the data plus one. That value was 318,673
or one greater than the frequency of traffic between Los Angeles
and San Francisco in 1981. This is summarized in 2.1.

S’ = 318,673 - 8 2.1

An alternative transformation function is the reciprocal,
presented in equation 3.

s’ = s™1(x) 3

k is a scaling constant. This function is nonlinear
{hyperbolic). As si{s > 0, s’44 =, and Si4 e, s’;4+ —0. When
there is no link between i and j, sj- 0. :%hus, this function
has the disadvantage of placing too much emphasis on very weak
links. For example, in 1968, the frequency of traf“ic between
San Diego and Ft. Lauderdale was only two. Where two nodes are
not linked, 8’ is undefined. Therefore, this transformation
cannot be applied in those instances. 1In this data set, all
nodes are completely interconnected and only the weakly lirked
ones merit concern.

There is also the problem of what value to assign to k. In
this case, and external theoretical criterion, the physical
distances among the cities, was selected. k was set equal to the
value required to set the trace of the time one (1968) network
space equal to the trace of the space of the great circle
distances (in kilometers) among the cities. This makes it
possible to directly compare the network space to the physical.

Because of the weak link problem, a third alternative
function was selected for analysis. It is the log of the
reciprocal and it is presented as equation 4.

S’ = log S™1 (k) 4

This transformation foreshortens extreme values and
linearizes the function. Prior research has shown that
logarithmic transformations alter the rank of spatial manifolds
(Woelfel & Barnett, 1982), producing essentially Euclidean
spaces. This requires that the network space be compared
relative to one another rather than against some absolute
criterion. k was set equal to the value required for equivalent
traces between the spaces produced by the physical distances
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between the cities and air traffic networks. That value was
14,638. The final transformation function is presented in 4.1.

S’ = log 8”1 (14,638) 4.1

All analyses discussed in this chapter will be based upon
distances generated with equation 4.1. It was selected because
the coefficients which resulted from its application were within
a convenient or middle range (Stevens, 1951).

The values were easy to work with and thus, accessable or
interpretable to network scholars.
communication among scientists (Barnett, 1982b).

Equation 4.1 represents a compromise between the reciprocal
and the inverse functions. The 1968 data were used to test the
three function discussed above.

The inverse was viewed as unacceptable because it resulted in an
almost Euclidean solution (warp = 1.20). The San Diego, Ft.
Lauderdale, New York City triad was clearly non-Euclidean. There
were only 2 trips between San Diego and Ft. Lauderdale and 8,396
and 24, 662 between New York and the other two nodes
respectively. This result occurred because k acted as an
additive constant. Also, the values which resulted from this
analysis were not easily used. The trace of the 1968 sociomatrix
was 1.323 x 1010, Additionally, the first two dimensions
accounted for only 8.0% and 6.1% of the variance, with dimensions
three to twenty-seven accounting for between 4.4% and 2.2%. 1If
all the links among the nodes were of equal strength each
dimension would account for 3.2% of the variance. While a large
number of dimensions would be expected because all the nodes are
interconnected, there was little differentiation among the
eigenroots. This raised some concern about the utility of this
function. The first dimension separated the peripherial nodes,
San Diego and Ft. Lauderdale, from the more central nodes. There
was little differentation among the remaining 29 nodes. Finally,
an examination of the difference scores among all 14 spaces
failed to reveal any apparent pattern.

The first dimension of the simple reciprocal transformation
had the two nodes with the least contacts as bipolar, and the
other nodes at the center, rather than differentiating them from
the other nodes as with the inverse. While this result was
desirable, others were not. All variance in the space occurred
on the first and last (largest imaginary) dimension. They
accounted for 1460.0% and -1360.5% of the variance respectively.
The second dimension accounted for only 15%. Due to the extent
of interconnection among the nodes, this result seems
inappropriate, as did the warp which was 14.6.

For the theoretical reasons discussed above and these
empirical results, the decision was made to base the description
of the change in the air traffic network on equation 4.1. TIts
warp was 2.48. There was some differentiation among the
dirmensions. Dimension 1 accounted for 123.1% of the variance,
dimension 2, 31.5%, dimension 30, -28.3% and dimension 31, -
79.77%. The resultant values were a convenient size. Finally,
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Ft. Lauderdale and San Diego were at the periphery and the other
nodes were near the center.

RESULTS
Change In Connectedness Over Time

The 14 sociomatrices of airline traffic were transformed into
multidimensional spaces and comparisons made using a rotation to
a least squares best fit which minimized overall departure from
congruence. In this way, global changes in the air traffic
network were examined. Rather than presenting all 14 sets of
coordinates and 13 comparisons among the coordinates, only
summary indicator is the trace of the coordinates matrix. The
trace or sum of the eigenroots may be taken to be a measure of
the network’s size. It may be used as an indicator of the
network’s connectedness. The smaller the value, the greater
the connectedness. The traces’ values for the 14 years are
presented in Table 2.

To describe the change in connectednedss over time, these 14
values were plotted against time. A visual examination of the
data revealed that the trace decreased rapidly during the first
few data points, leveled off and increased slightly for the last
two points. 1In other words, connectedness increased rapidly
during the first few years, leveled off during the later years
and decreased slightly at the end. This examination suggested
that the pattern of change could be described by a simple
exponential decay function,

Y = a + be"kt 5
where, a = asymptote
b =Y at time zero
k = coefficient of decay

Since the last two values of the trace were greater than the
ones which immediately preceeded them, an alternative function
was suggested. It was a polynomial with an intercept, a negative
linear component and a positive quadratic term. The later term
would account for the reversal in the trend.

Y = a - bt + byt? 6

The data were fit to both functions. 1In the case of
exponential decay, a = 43,838 b = 51,919 and, k = -.82, RZ =
.864. For the polynomial, a = 63,041, b; = 3,806 and by = 169,
RZ = .752. Both the linear and quadratic terms were
statistically significant. F = 13.18 (p<.004) and F = 6.19
(p<.03) respectively. These results indicate that the proposed
methods can be used to provide parsimonious, "law-like"
descriptions of the change in social networks. They are
summarized in Table 2 and Figure 1.

While both functions account for a sizable proportion of the
variance in the trace over time, they provide different
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information. The exponential decay function does not account for
the sign reversal of at the last points. It treats them as
deviations from the asymptote, as it fits the entire data set.
While the polynomial accounts for less variance, it does account
for the reversal. The quadratic term is significant. Thus,
while the overall pattern of connectedness in the air traffic
network increased exponentially, this pattern may be changing.
Connectedness may be decreasing. Two points are two few to make
any definitive statements about this trend. The curve may be
oscillating about the eventual asymptote. It should be examined
in the future to verify the trend. Additional insights may be
gained by examining the magnitude of change between the
sociomatrices.

The Change Scores

The overall change scores (differences between time i and
time i+1) from Galileo (tm) reveals a consistant pattern.11 They
are presented in Table 3 and are graphically displayed in Figure
2. The data suggests two distinct epoches, and early period,
1968-1974, characterized by a high rate of change and, a stable
later period, 1974-1981. The magnitude of difference between
averages of these sets of point indicates that the rate of change
was 7.51 times greater for the early epoch. The airline network
initially changed rapidly and then slowed to a stable pattern
with a slow rate of change. As will be discussed later, this
difference may be attributable to the opening of the Dallas-Ft.
Worth airport which acts as a central hub. These results suggest
that the exponential decay may provide a better description of
the pattern of change in connectedness than the polynomial
because the rate of change at the end is so small.
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TABLE 2

Resultant Coefficients, Observed Traces,
Predicted Values and Residuals

T Observed Exponential Residual Polynomial Residual

Trace” Decay Predicted Predicted
1 67,730 66,729 1001 59,404 8325
2 50,699 53,931 -3232 56,105 -5407
3 48,657 48,288 369 53,145 -4489
4 48, 331 45,800 2531 50,524 -2193
5 46,718 44,703 2015 48,241 1523
6 45,817 44,220 1597 46,296 -479
7 47,987 44,007 3980 44,690 3297
8 45,157 43,913 1244 43,422 1735
9 44,323 43,871 452 42,492 1831
10 43,421 43,853 -432 41,901 1520
11 41,587 43,845 -2258 41,648 -6l
12 40,507 43,841 -3334 41,733 -1226
13 41,567 43,840 -2273 42,156 -590
14 42,178 43,839 -1661 42,919 -741

EXPONENTIAL DECAY: Y = a + bekt

a = 43,838

b = 51,919

k = -.82

RZ = .864
POLYNOMIAL: Y = a + bjt + byt?

a = 63,041
by = -3,806 F = 13,18 p = .004
b3 = 169 F = 6.19 p = .03
RZ = .752

* = thousands
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Figure 1
Trace Over Time
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TABLE 3
OVERALL CHANGE BETWEEN ADJACENT POINTS IN TIME

YEARS DIFFERENCES
1968-1969 585.8
1969-1970 2,278.5
1970-1971 2,316.8
1971-1972 2,362.9
1972-1973 2,370.2
1973-1974 2,350.6
1974-1975 383.2
1975-1976 259.8
1976-1977 216.1
1977-1978 253.5
1978-1979 302.6
1979-1980 248.0
1980-1981 241.9

The Change Of Individual Nodes

Insights into the changing pattern of the nodes’
relationships may be gained by examining specific nodes. In the
early years, Ft. Lauderdale and San Diego changed more than twice
the overall average for each of these seven years. During the
later period, Tampa and Dallas changed more than the average.
But, these changes were quite small when the overall magnitude of
change during the early epoch is considered.

Specifically, how dia the position of these nodes change over
time? Ft. Lauderdale moved from the periphery toward the center
of the network. Through hierarchical cluster analysis, it ' as
determined that it was the least central node in 1968.12 By 1976,
it was the fourth least central. 1In 1981, it was the seventh
least central node. San Diego, likewise moved from the periphery
to the center of the network. In 1968, it was the second least
central node. Within two years, it stabilized as the tenth least
central node. These nodes were replaced at the periphery by the
smaller cities in the midwest, Columbus, Cincinnati and
Indianapolis.

Tampa clustered with Atlanta during the early years. Between
1975 and 1977, it moved from being a "branch” of Atlanta to
become directly interconnected with the other nodes at a national
level. Dallas continued to become more central in the network
throughout the later period.

CHANGE IN THE AIR TRAFFIC NETWORK STRUCTURE

How did the overall network structure change over time?
Groups within the network were identified by hierarchical cluster
analysis. In the early years, there were two regional groups oOr
clusters. One was centered about Chicago and New York and
included all the eastern and midwestern cities from Miami to
Minneapolis. The other cluster was centered on the west coast
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Figure 2
Overall Change Over Time
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around Los Angeles and San Francisco. It included another
cluster which contained New Orleans, Dallas and Houston.
Hierarchical clustering combines all nodes into a single cluster.
These two regional groups were combined at iteration 22, in 1968,
and iteration 17, in 1969. Worth noting were the positions of
Kansas City and St. Louis. While the later was part of the
eastern cluster, the former was grouped with the west. The break
in the air traffic network in 1968-69 appeared to go through the
middle of Missouri north to the west of Minneapolis and socuth to
the east of New Orleans.

Analysis of the later years, fails to find as profound
regional variation in the network structure. The cluster
analysis shows that New York, Chicago, Los Angeles, San
Francisco, Dallas and Houston are combined into a single cluster
immediately, at iteration 4. The other individual nodes were
then added to this hub with little prior regional clustering.

This conclusion was confirmed through regression analysis.13
The coordinate values of an early year, 1969, and a later year,
1980, were regressed on latitude and longitude, the dimensions of
physical space. In the early year, the first dimension accounted
for 70.4% of the variance in longitude and the first four, 83.6%.
The first dimension accounted for 25.1% of the variance in
network structure and the four together, 34.3%. In the later
year, the first dimension accounted for only 63.7% of the east-
west variation. It took six dimensions to account for an
equivalent 83.3%. The first dimension accounted for only 13.4%
of the network structure and the six, 41.1%. The v:>riation
attributable to longitude is more homogeneously distributed
during the later years, indicating a breakdown of the regional
grouping.

The regression analysis also revealed a change in north-south
variation. In 1969, there was no clear relation between la .itude
and the network dimensions. The largest proportion of variance
in latitude accounted for by a single dimension was 25.5% and it
accounted for only 0.5% of network structure. The second largest
was 18.8%. It accounted for only 0.6%. It took 11 dimensions of
the network to account for 86.7% of the variance in latitude.

The variation attributable to latitude was homogeneously
distributed at that point in time. 1In 1980, it took only six
dimensions to account for 88.5% of the variance in latitude. The
first two accounted for 19.9% of the network. This indicates
there was greater north-south differentiation during the later
year than in the early one. Thus, while the network in the early
years was characterized by east-west differentiation, the later
years seem to be characterized by north-south differentiation.
This suggests that the fundamental change in the network
differentation occurred from coast-to-coast to frost belt-
sunbelt.

Network Density
The air traffic network’s density increased. As in the case

of connectedness, the distance at which the least central node
was clustered to the air traffic network decreased over time with
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a slight reversal in 1980 and 1981. The correlation between the
trace (connectedness) and the distance at which the least central
node was clustered was .952.14 Coupled with the breakdown of the
regional clusters this suggests that the distribution of air
traffic in the United States has become more homogeneous.

This may be supported by examining the distribution of
variance among the dimensions (eigenvalues) and the warp in the
network’s spaces over time. If the network became homogeneous,
that is, the links became equally strong, then the space would
become Euclidean (warp = 1.0) and the variance explained by the
largest single dimension would decrease over time. In 1968, it
was 330.8%. Percentages greater than 100 are due to the warp.
In 1969, it was 43.0%, and by 1981, 14.0%. If all dimensions
were equivalent, then each would account for 3.2% of the
variance. The variance in the size of the eigenvalues also
decreased. 1In 1968, the standard deviation was 77.73, in 1969,
9.37. After 1971, it stabilizes between 2.89 and 4.52.

The warp, likewise, suggests that the links become more
homogeneous. In 1968, it was 3.97, in 1969, 2.15, and by 1978,
1.04. Warp, however, has a reversal during the last two years.
It rises to 1.09 (1980) and 1.10 (1981). This suggests that the
distribution of air traffic is becoming less homogeneous. This
is consistant with the findings that the network is less
connected and dense. The value of the distance required to add
the least central node to the network, the per cent variance of
the first dimension, standard deviation of the eigenroots’ per
cent variance and the warp for each year are presented in Table
4.

TABLE 4
HOMOGENEITY OF THE NETWORK OVER TIME
YEAR MAXIMUM DISTANCE PER CENT VARIANCE S.D. OF WARP
FOR CLUSTER FIRST DIMENSION EIGENROOTS
1968 20,407 330.8 77.73 3.97
1969 6,529 43.0 9.37 1.25
1970 4,380 28.4 5.22 1.13
1971 3,888 25.5 4.64 1.11
1972 3,244 21.9 3.98 1.07
1973 3,045 20.7 3.97 1.07
1974 4,472 23.8 4.52 1.09
1875 2,782 17.8 3.33 1.06
1976 2,768 16.6 3.23 1.06
1977 2,733 16.3 3.10 1.04
1978 2,723 15.0 2.97 1.05
1979 2,665 14.6 2.89 1.05
1980 2,942 14.6 3.22 1.09
1981 3,024 14.4 3.30 1.11
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Graphic Representations Of Network Structure

One of the advantages of metric multidimensional scaling is
its ability to graphically represent the relationships among the
nodes. Plots have not yet been presented because of the low
percentage of variance attributable to any two dimensions.
However, since one goal of this chapter is to demonstrate this
method, three plots will be presented. They are 1970 (Figure 3),
1975 (Figure 4) and 1980 (Figure 5). The two plotted dimensions
(the two largest real dimensions) account for 37.7% of the
variance in 1970, 26.5% in 1975 and 23.0% in 1980. The later
percentages are smaller due to the increased connectedness of the
network. The 1970 plot has longitude regressed on the first
dimension. The 1980 plot includes its cluster analysis. There
is considerable distortion in all three cases due to low
percentages of explained variance.

These three plots were chosen to demonstrate the change in
the network over time. The 1970 plot shows a midwest-eastern
cluster with Ft. Lauderdale and Portland at the periphery. Also,
there is a prominent east-west dimension. By examining the scale
across all three spaces, it is clear that density and
connectedness became greater. By 1975, the regional clustering
is less prominent. Also, the distribution of the nodes within
the space became more homogeneous. The 1980 plot shows a further
preakdown of the regional clustering an increase in homogeneity,

density and interconnectedness. If these two dimen. ions
accounted for all the variance in the network, centrality could
be represented as a node’s distance form the origin. In all

three plots, Chicago, is closest to the origin. It is the most
central node. This conclusion is consistent with the results of
the cluster analysis in which Chicago has the shortest dist ince
for inclusion.

Stability Within The Network

Up to this point, this paper has concentrated only on changes
in the network. The issue of stability has not been addressed.
Stability may be inferred through an examination of the
correlations of the nodes’ locations on the dimensions at
adjacent points in time. The mean correlation for the first
dimension was .981. It was .986 for the second, indicating that
the network is stable.

Early in this paper an argument was made supporting those use
of the dimensions with negative eigenroots in the analysis of
social networks. The mean correlation among the largest
(absolute value) of these dimensions across adjacent points in
time was .67. For the last ten points it was .82 and .99 for the
final four. This indicates that the variance on the imaginary
eigenvector is not random error and that change in the size of
this dimension and the arrangement of the nodes on it should be
examined.

One reason for stability within the network is the fixed
physical distances among the nodes. Physical proximity is one
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determinant of network structure (Olsson, 1965; Rogers & Kincaid,
1980). To determine how physical structure impacts on network
structure, two multiple regressions were performed with the 14
sets of network coordinates as the independent variables and the
31 cities’ latitude and longitude as the dependent variables.

The zero-order correlations with latitude were: .45 for
dimension 3, .25 for dimension 4, .22 for dimension 31 and .18
for dimension 2, RZ = .35 for those dimensions accounting for 2%

or more of the variance in latitude. The correlations with
longitude were .83 for dimension 1, and .38 for dimension 2, R
= .84. The multiple correlations were multiplied by the mean
proportion of variance accounted for by the respective dimensions
across the 14 data sets.l® Since latitude and longitude are
orthogonal, these two values were summed. The results indicate
that approximately 18.3% of the variance in network structure may
be accounted for by the physical relations among the nodes.
Thus, one source of network stability may be physical proximity.
Another factor contributing to the stability within the
network is the populations of the nodes. Population is a major
determinant of the frequency of interaction among cities (Olsson,
1965; Hamblin, 1977). The correlation between the cities’
populations in 1970 and 1980 is .99. Those nodes which moved
greater than the average (Ft. Lauderdale, San Diego, Dallas and
Tampa) all grew at least 24.7% between 1970 and 1980. Ft.
Lauderdale, the node whose position changed the greatest, grew
68.2%. These nodes along others with comparable growth rates
(Houston, Denver and Phoenix) all moved from the periphery to the
center of the network, suggesting that population stability may
contribute to the overall network stability and that change in
the network may be due to population dynamics.

Determinants Of Change In Networks Structure

The network structure appears to change in an orderly manner
which can be described by simple mathematical functions.
However, :hose variables which facilitate or inhibit this change
must be identified before an explanatory theory about social
networks can be developed. A number of variables may be
suggested to account for the change in air traffic. Among them
are economic factors (GNP, GNP service, inflation as represented
by producer and consumer prices, personal income, unemployment,
automobile sales and fuel prices), the diffusion of new
communications technologies, population growth and mobility, and
changes within the airline industry (deregulation) and the
network itself (the opening of the Dallas-Ft. Worth and Atlanta
airports and the shifting operations to these nodes). To
determine the impact of these factors, annual data on these
variables must be available on a national level or for each
individual node. It was not available for this time period for
the population or communication technologies. It was available
for the economic factors and those internal to the industry.

The 14 annual values for the variables were correlated with
the trace and 13 difference scores (time i+l - time i) with the
change in the trace and the overall change in the network between
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adjacent points in time. Due to the limited number of points in
time, only bivariate linear relations were examined. They were
presented in Table 5. Worth noting is the consistantly high
relation between the trace and all the variables with the
exception of annual automobile sales. This is due to the
variables’ autocorrelation (Box & Jenkins, 1976). As a result,
the linear trend was removed by taking first-order differences.
Thus, the change in the variables were correlated with the change
in the trace and the overall mean change between adjacent points
in time.

The opening of the Dallas-Ft. Worth airport correlates -.89
with the mean change. Prior to its opening, there is a
consistant high rate of change (See Figure 2). Afterward, the
rate of change is lower. The network becomes stable. Both
change in personal income and GNP correlate significantly with
the overall rate of change. While none of these three variables
have a significant relation with the change in the trace, they do
have among the highest correlations. Although not significant,
change in fuel prices has the highest correlation with the change
in trace (.53) and a strong relation with the overall change (r =
.31) .

TABLE 5
CORRELATION OF EXTERNAL VARIABLES WITH
CHANGE IN NETWORK STRUCTURE

TRACE CHANGE IN MEAN OVERALL

TRACE CHANGE
DEREGULATION -.51 .26 -.46
ATLANTA’S OPENING -.31 .26 -.36
PERSONAL INCOME -.69% .38 -.56%
DALLAS’S OPENING -.60%* .27 -.89%
GNP -.68% .41 -.67*
GNP SERVICE -.61%* .25 -.38
PROCDUCER PRICES .15% -.24 -.29
CONSUMER PRICES .18%* -.02 .12
UNEMPLOYMENT -.65% .10 .03
AUTOMOBILE SALES .17 .00 .00
FUEL PRICES -.80%* .53 .31

*SIGNIFICANT AT .05 LEVEL

Descriptively, how do these variables relate to the critical
points in time that have been identified through the analysis of
the network structure? 1In 1974, there was a slight reversal in
the trend towards greater connectedness. In 1974, fuel prices had
their first large increase due to the Arab embargo. The later
may account for the trend reversal. Jet fuel prices caused an
increase in ticket prices which may have resulted in fewer trips
among the nodes and thus lower connectedness in this network.
Between 1974 and 1975 the network stabilized. In 1974, the
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Dallas-Ft. Worth airport opened. 1Its use as a central hub seems
to have stabilized air traffic.

1980 began a trend towards lower connectedness. That same
year Atlanta’s Hartsfield airport opened. One interpretation may
be that there was no longer a need to travel through a more
central node since Atlanta’s traffic expanded as it became a
regional hub. Thus, the network decentralized. 1980 also began
an increase in unemployment and a smaller increase in personal
income than in previous years. Thus, the change in the trend may
be due to economic factors, the recent recession. 1981 was also
marked by the air traffic controllers’ strike which forced a
cutback in air traffic. The continuation of the trend may have
been due to this event.

The airline industry was deregulated in 1979. After that
many flights and routes were abandoned because they were not
profitable. The change in trend may be due to deregulation of
the industry. It may have taken a year for its impact to show up
in the state of the network. Determining the precise lag between
deregulation and network characteristics would require more than
the 13 changes scores available. Thus, this interpretation may
only be suggested. In summary, change in the air traffic network
appears to be related to the changes in economic conditions and
the changes within the airline industry.

DISCUSSION AND SUMMARY

This chapter has demonstrated the utility of met.ic
multidimensional scaling to describe changes in social networks.
It uses a Riemannian man‘fold, rather than an Euclidean space, to
represent the relative positions of the nodes. The results
suggest, that change in America’s air traffic network has b :en
orderly and that it can be described precisely by simple
mathematical functions that can be readily interpreted when
exogenous factors are examined. The trace of the spatial
coordinat :s matrix, a negative indicator of network
connectedness, decreased rapidly between 1968 and 1974, remained
stable until 1980, when a reversal began. The only exception to
this trend was 1974, when fuel prices rose greatly and the
Dallas-Ft. Worth airport opened. Change in the trace may be
described by two functions, an exponential decay, R4 = .864, and
a polynomial to the second degree, R4 = .752. 1In the later case,
the quadratic term was significant, indicating change in the
direction of connectedness during the last two years. This
reversal may be attributed to a number of factors. Among them,
the conomic recession during that period and the opening of
Atlanta’s airport. Consistant with this pattern was one
independently obtained through a cluster analysis of the
frequencies of interaction among the nodes (r=.95).

The rate of change in network structure may be described by
two epoches. The first epoch (1968-1974) was characterized by a
high rate of change, while the second (1974-1981) was relatively
stable. During the first epoch, the network was differentiated
by an east-west dimension. The second was differentiated by a
north-south dimension. These changes may be attributable to the
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opening of the Dallas-Ft. Worth airport and the increased use of
its facilities as a central hub for air traffic.

The network also exhibited a high degree of stability. The
mean correlation between the first two dimensions at adjacent
points in time were .981 and .986. For the largest imaginary
dimension, it was .67 and .82 for the last ten points in time.
This demonstrates the necessity of using a Riemannian manifold to
describe social networks.

Future research is planned using alternative rotational
algorithms rather than the ordinary least squares procedures
reported here. During the period examined the critical event in
the air traffic network’s history appeared to be the opening of
the Dallas-Ft. Worth airport. To examine its impact on the
network and the node’s changing position within the network, a
rotational scheme which hold the other cities in the network
constant relative to a free moving Dallas should be applied.

There is a family of models developed by geographers to
describe the frequency of interaction among collectives such as
cities. They are known as Gravity Models (Hamblin, 1977; Olsson,
1965). Originally proposed by Zipf (1949), they predict the
frequency of interaction as a function of the product of two
nodes’ population divided by the distance between them raised to
some power. It is presented as Equation 7.

i = c(py pp) / d¥ 7

Test of this model have resulted in explained variances in
the range, .592-.774 (Howrey, 1969; Long, 1970). The exponent
ranges from .14 to less than 3.0 (Olsson, 1965), depending on the
type of network examined. Tests with the 1980 data have resulted
in explained variances between .46 and .48. 6 The exponent ranged
from .11 to .40, depending on the restrictions placed on the
model. These results suggest another analysis, a rotation in
which the nodes are weighted by their population. While Woelfel,
et al. (1975, 1979) describe the algorithm for a weighted
rotational procedure, the software necessary to perform this
analysis is not operational.

Rogers and Kincaid (1980) propose two determinants of network
structure, physical proximity and homophily or similarity among
the nodes. This paper discusses only the former. To evaluate
the latter data on the similarity among the nodes must be
collected. Since economic variables may predict change in the
network, a logical starting point would be to gather economic
data on the cities. Other variables such as ethnic makeup,
mobility patterns, cultural, educational and political factors
could be examined. From these data, an index of similarity among
the nodes may be developed. This would allow the construction of
a sociomatrix based on the nodes’ structural equivalence.
Structural equivalence occurs when two nodes’ occupy equivalent
positions in a network due to the pattern of relations (Burt,
1982). This assumes that if two nodes are similar, their
position in the network should be equivalent despite not
necessarily being in direct communication contact. For example,
the Florida nodes, Phoenix and San Diego have equivalent
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positions based upon tourism. However, they have little direct
interaction. A structural equivalence approach may reveal many
insights into the changing nature of the air traffic network.
This matrix could be directly compared to the sociomatrices of
air traffic in much the same manner as any two sociomatrices. 1In
this way, the extent of influence of homophily on the structure
of the network can be determined.

Future research should apply the methods described here to
other networks. One such application would be to the
communication networks of formal organizations as suggested by
Goldhaber, et al. (1983). 1In that case, the unit of analysis
(nodes) were branches or function of an organization. At that
level, the system was highly interconnected and the information
on the strength of link among the nodes could have been treated
as distances in matrix S. Such research on a formal organization
is currently underway. These procedures are directly applicable
to Computer-Mediated Communication Systems (Danowski, 1982; Rice,
1982). 1In those cases, the data are error-free, time sensitive
and may include a quantitative measure of interaction which could
be converted to communication distances.

There are drawbacks with this method that should be
discussed. One is that it can only be applied to those systems
that are completely interconnected. The reason is that in those
cases where the frequency of interaction between two nodes is
zero, the reciprocal becomes undefined. To apply the proposed
procedures to those situations, rules must be established to deal
with links with a value of zero. One simple solutica is to
assign an arbitrarily large value. In that case, the value of
the trace, the indicator of connectedness discussed in this
paper, would also be arbitrary and no inferences about it could
be drawn.

Another problem with these procedures is that their
application is to relatively small networks. The Galileoqpy
software is currently limited to 40 nodes. Also, it is limited
to 40 poiaits in time. This limits the potential application of
classical time-series analysis (Box & Jenkins, 1976; Jenkins &
wWatts, 1968) for analyzing the periodicity of changing network
parameters as proposed by Barnett and Woelfel (1979). Although
there are procedures to work around the points in time
limitation.

A final complication concerns those cases where the research
is interested in directional or nonreciprocated links. In that
case, Sj4 = S44. Currently, Galileo (tm) has no procedures to
directly analyze assymetrical matrices. Although plans to
calculate both the left and right handed eigenroots have been
discussed (Woelfel, personal correspondence), a simpler method,
currently available, would be to create two matrices Sggpnq and
Sreceiver and then compare as if they were separate points in
time. 1In this way, one can determine the differences between the
incoming and outgoing links.

In summary, this chapter has proposed that a variant of
metric multidimensional scaling, the Galileo Systemgqy be used to
analyze over-time changes in social networks. The paper
discussed the theoretical necessity of using these procedures and
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certain methodological problems associated with this approach.
Next, it examined the air traffic network among 31 major American
cities over the 14 year period, 1968-1981. It demonstrated how
the proposed method can provide insights into the activity within
the network and the impact of exogenous factors upon the
structure of the network.

NOTES

1. An earlier draft of this chapter was presented to the
Sunbelt Social Networks Conference, Phoenix, February, 1984. The
author would like to thank the following people for their input
into this research. They include, Mark T. Palmer, Bruce Alesse,
Mary Russell, Edward L. Fink, Shirley Masse, Joseph Woelfel,
James A. Danowski, Gary Siegel, Gerald Goldhaber, Charles Petrie,
Kenneth Day, Richard Holmes, James Gillham, D. Lawrence Kincaid,
Diana Miller, Nicholas Illich, Mark Feldman and Ronald Rice.

This research was made possible in part by a grant from the
Faculty of the Social Sciences at the State University of New
York at Buffalo. An earlier version was presented to the
Information Systems Division of the International Communication
Association, Dallas, May, 1983.

2. Rice (1981) identifies over 270 resource materials
relevant to the study of human interaction over-time. However,
most are theoretical or methodological. As such, while they may
guide the analysis of longitudinal network analysis, they
contribute little to the actual knowledge of the changing nature
of social networks.

3. This matrix is typically "double centered”. That is the
grand mean of the distance matrix is subtracted from all wvalues,
giving the matrix a grand mean of zero. Thus, the matrix is

centered about zero. As a result, the centrality of any
individual node, i, may be found on the diagonal of the scalar

X & : -
products matrix (S*'S). The value on the diagonal, sjiji,
represents the distance of node i from the center of the network,
such that the greater the value of sjji, t+he less central the node
is to the network.

4. 1In the example, matrix S would produce a two-dimensional
space because any matrix of N points may be described without the
loss of any information by a manifold of N-1 dimensions. For

example, any two points may be precisely described by a line.
Three points may be described by a plane (two dimensions) and

four points by a cube (three dimensions). N points by a space of
N-1 dimensions.

5. 1In this example, one assumed that there was some
communication between b and c. If all communication between b

and ¢ occurred through a, one must identify a minimum frequency
greater than zero, or a maximum value for the social distance of
the bc link. Without such a value, bc would equal zero and the
calculation of the reciprocal could not be performed.
6. These data may be obtained from,
The Economics and Finance Council
Air Transport Association of America
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1709 New York Avenue, N.W.
Washington, D.C. 20006

7. Not included were San Antonio and Sacramento. Oakland,
San Jose and San Francisco were combined into a single node.

SCSA Ft. Lauderdale was treated separately from Miami because of
the great frequency of air traffic into its airport.

8. The data were extracted from Table 11 "Domestic Origin-
Destination Survey of Airline Passenger Traffic.”

9. When equation 1 was applied to the San Diego-Ft.
Lauderdale-New York triad, cos ©® = 16,011.24, indicating a
violation of the rule of triangular inequalities. However, when
the same equation was applied to the triad after the inverse
transformation was performed, cos ® = .56, and Euclidean
solution.

10. The selection of this label for the trace is somewhat
arbitrary. While it is an indicator of the total number of links
among the nodes and therefore connectedness, it is also an
indicator of density. The trace is a measure of the volume of
the network space. Since the number of nodes is constant, the
smaller the spatial manifold, the greater the network’s density.
Connectedness was chosen to distinguish the coefficient from a
resultant coefficient of cluster analysis which uses the term
density to indicate the wvalue at which the least central point is
entered into a cluster.

11. Root mean squares (£x2/n)-> of the changes were examined
rather than simple means because many of the distances moved were
negative. That is the differences occurred on those dimensions
with negative eigenroots.

12. BMDP’s P2M hierarchical cluster analysis program was used
to identify subgroups in the network (Dixon, 1981). It clusters
cases based on a measure of association or similarity. The
distances separating the nodes (cases) were the measure of
association. Initially, each mode is considered a separate group
or cluster. Cases and/or clusters of cases are joined in a
stepwise process until all cases are combined into one cluster.
Hence, the label, Hierarchical Cluster Analysis. The algorithm
begins by computing a matrix of distances between each pair of
cases (nodes). In this case, a distance matrix, S, was provided.
Then, disks are placed about each point and their radii expanded
until the intersection of two disks or until one covers another
point. Their distance is the length of the radius. A matrix of
these pseudo-distances is then stored. The two cases with the
smallest distances are joined first. The process is repeated.
During the amalgamating process, (a case with another case, a
case with a cluster or two clusters), distances are read from the
initial distance matrix. The results include a distance or
density measure indicating the distance at which the nth case was
clustered and a tree diagram measure may be used as a measure of
centrality. The more central nodes are clustered first and have
a lower distance value. The more peripherial ones are added
later and have a greater distance value.

13. To check the validity of these procedures, the physical
distances among the cities were transformed into spatial
coordinates and then the coordinate values regressed on latitude
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and longitude. Dimension one’s correlation with longitude was
.993 (r< = .988). Dimension two’s correlation with latitude was
.982 (r? =.964). These dimensions accounted for 81% and 19% of
the variance in the distances among the cities respectively.
Together, they account for 98.7% of the variance in the distances
among the cities. This was determined by summing the proportions
of explained variance multiplied by the correlation squared. The
remaining 1.3% may be attributable to measurement and rounding
error and the curvature of the earth. Thus, regressing matrix
S’s coordinate values upon latitude and longitude can be used to
determine the impact of physical location on network structure.

14. This would suggest that the measure of connectedness, the
trace of the coordinates matrix, was the same as the measure of
density which resulted from cluster analysis and that the labels
are somewhat arbitrary.

15. The decision to combine the 14 sets of coordinates was
based upon the high correlations among the respective dimensions
at adjacent points in time. Combining the dimensions results in
a conservative estimate of the variance attributed to physical
proximity. If two dimesnions are not identical random error is
entered into the analysis and the estimate of goodness—-of-fit are
lowered. The reason is that dimension n at time k may not be
dimension n at time k+1 due to change in the network which
changes the order in which the dimensions are extracted.

16. Only 26 nodes (325 pairs) were included in testing the
gravity model. Excluded were, Columbus, Ft. Lauderdale,
Milwaukee, San Diego and Tampa. The specific form of the model
tested was,

y = 316 pl.88 p2.83 /d.ll

Predicting interaction from the nodes’ population alone, produced
an R¢ = ,458. This indicates that population alone is the best
predictor of interaction by air. An examination of the residuals
revealed that the greatest deviations (greater than 3.0 standard
deviations) occurred between nodes less than 125 miles apart.
Travel between them is not efficient using other modes of
transportation (automobile, bus or train). For example, 4 of the
5 pairs with the greatest residuals are on Amtrack’s New York to
Washington corridor (New York, Philadelphia, Baltimore and
Washington). Here travel is most efficient via rail. As a
result of this analysis, the model was tested with only those
links whose distance was greater than 125 miles. Seven of 325
pairs were eliminated. The coefficients were, ¢=242, m = .93, n
= .85, r = -.397, R = .582. R? with the nodes’ population only
was .522. For the reasons why ¢ is only an approximate value see
Hamblin (1974).
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