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Scientists acquainted with opinion measurement are becoming
more aware of the methodological problems associated with
category scales. One very popular category scale is Osgood and
Tannenbaum’s (1957) semantic differential: A scale that uses
bipolar descriptors to measure an unidimensional construct such
as activity, potency, or evaluation.

The measurement problems associated with category scales have
received considerable discussion in both psychometrics and
psychophysics (cf. Lodge, 1981). The limitations and weakness
include:

1) Lost information due to limited resolution of categories
- {(imprecise measurement)

2) Ordinal level of measurement

3) Distortion of true response due to: a) a finite number
of categories and b) an overanchored, fixed set of responses,
i.e., predetermined set of responses along an underlying
continuum.

This chapter presents an alternative to the semantic
differential: multidimensional reduction of ratio judgments of
separation. We first present the "method of ratio judgments” and
then present some empirical work comparing the two techniques.

Ratio Judgments of Separation

There are a few properties of objects and stimuli that are so
evident, obvious, and pervasive in the observers’ daily
experience that they become fundamental to their perceptual
apparatus. That is, they are "knowns" or "givens"” which do not
seem to depend upon definition. The concept of distance and time
fall into this category. Fundamental ratio measurement of
distance is explained by Einstein in the following passage.

For this purpose [the measurement of distance] we
require a "distance" (Rod S) which is to be used once
and for all, and which we employ as a standard measure.
If, now, A and B are two points on a rigid body, we can
construct the line joining them according to the rules
of geometry; then, starting from A, we can mark off the
distance S time after time until we reach B. The
number of these operations requiredis the numerical
measure of the distance AB. This is the basis of all
measurement of length (Einstein, 1961, p. 5).

Finstein’s mode of reasoning is instructive for it illustrates

that measurement is a two-staged procedure: First, an arbitrary
separation between two points, say the separation between x and
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y, is stipulated as the standard of measure, Rod S. Second, this
standard of measure is then used for the measurement of the
separations between other objects; that is, the distance
separating A and B is given as the ratio of this initial
standard.

The measurement of distance and time can only be measured in
relation to some other standard of measure (Rod S) which itself
is defined and measured relative to other distances. A
measurement system that employs, at its core, a relative standard
is commonly referred to as fundamental measurement (Campbell,
1928; Ellis, 1966; Hays, 1967, Suppes & Zinnes, 1963). On the
fundamental measurement of length or distance, Hays (1967)
remarks that "Length is measured in terms of length. One need
not define length in reference to other quantities" (p. 15).

What is the common principle connecting a fundamental
perception such as distance or time? For the perception of both
distance and time there exists some type of separation (i.e., an
observable distinction, discrepancy, disparity, difference, etc.)
among two or more stimuli; thus distance may be viewed as
separation in terms of physical location and time as separation
in terms of a duration. Viewing the concept of separation as a
fundamertal perception reveals areas other than physical objects
and temporal events for which fundamental measurement is
possible, viz., the semantic, symbolic or conceptual domain.

Semantic Separations

Are NIXON and REAGAN separated? Most would answer in the
affirmative. How much are they separated? If people are asked
co measure the length of their shoes or how much time it takes to
tie them without the use of a ruler or clock, they do so quite
. accurately. However, when they are asked to measure the
separation between NIXON and REAGAN they at first are Stumped.
Why? The answer rests in the existance of a standard metric and
rules for its use in thce measurement operation. Standard metrics
for the measurement of distance and time are highly codified
components of the human symbolic repertoire; most everyone is
familiar with the mile, yard, foot, and inch and the
relationships of one metric to the other. No such metrics or
relational rules (other than terms in ordinary language)
currently exist for the measurement of semantic separations.
Let’s suppose for a moment that no standardized metric existed
for the measurement of distance, a problem that our ancestors
were faced with years ago. Then could the distance between A and
B be measured? Yes. But a metric and a rule for doing so must
be initially created before measurement could proceed. That is,
some arbitrary distance, say the distance between here and there,
must first be generated, and the distance between A and B could
then be given in relation to that arbitrary distance (Rod §).
With respect to the measurement of semantic domain would then be
given by the two-staged procedure: the specification of metric
and a request to use ratios of that metric for the measurement of
the separations among other objects.
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The ratio judgment of separation technique discussed here is
similar to the family of ratio scaling procedures advocated by
stevens (1951). The logic of this technique is not original, for
it was first advocated by Torgerson (1958, p. 293). In the hard
sciences, however, the technique dates from antiquity.

To illustrate this idea, the following kind of question is
asked: If NIXON and REAGAN are one hundred (100) units apart,
then in relation to NIXON and REAGAN how far apart are REAGAN and
HART? Most persons would probably report a number larger than
one hundred.

In providing a standard metric (Rod S) for respondents to
judge other separations among semantic objects, the separation
among objects may be conveniently assessed by a question of the

form: "If x and y are u units apart, how far apart are A and B?"
A question as such requests a separation judgment from the
respondent ("...how far apart are A and B?") which is based upon

ratios of the separation between x and y. A and B in this case
refer to all of the possible pairs of the semantic objects to be
scaled.

The matrix S is used to represent the pairwise separation
judgments. The diagonal elements of S are zeroes (S;; = 0) and S
is symmetric (Sij = Sji)-

The Geometry of Separation

The concept of a geometry of separation capitalizes on the
recognition that physical distance is viewed as a special case of
separation in general, and thus is isomorphic to semantic
separation in formal structure. Therefore, semantic separations
may be presented in geometric format analogous to the depiction
of physical distance; the separations in the matrix § may be

arrayed in a geometric pattern. Consider the null matrix:

a b C
0 0 0
S = 0 0 0
0 0 0
Here, Szp = Sac = Spe * 0, the three objects lie on a point in a
zero (0) dimensional space. In the matrix:
a b C
0 1 3
S = 1 0 2
3 2 0
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The separations form a line segment in a one-dimensional space
which may be displayed as:

And the matrix:

n

it
N O
NOR D

.24

represents a triangle in a two-dimensional Euclidean space.

And finally consider the matrix S that extends outside the domain
of real numbers:

a b c
0 1 4
S = 1 0 2
4 2 0

This geometrical patterns represents a complex, non-Euclidean
space of 2 dimensions; one real and one imaginary. The
translation of semantic separations will produce a spatial
manifold of K dimensions, where K is at least one less than the
number (n) of semantic ~bjects (K = n-1). Classical
multidimensional (MDS) scaling is used to find the dimensions and
corresponding coordinates of § (Torgerson, 1958).

An Empirical Comparison

Data were collected to compare the semantic differential and
ratio MDS. For the semantic measurements using the semantic
differential, three scales polarized with evaluative descriptors
and separated by seven steps were used. The objects scaled were:
ROCKEFELLER, MCGOVERN, WALLACE, NADER, REAGAN, KENNEDY, FORD,
HUMPHREY, ERVIN, NIXON, and MYSELF.

For the ratio judgments of separation, Rod S was created by
specifying that the separation between GOOD and NEUTRAL was fifty
(50) units apart. Separation judgments were obtained for all of
the above semantic objects including the evaluative descriptors
used in the semantic scales, i.e., GOOD, BAD, FAVORABLE,
UNFAVORABLE, POSITIVE, and NEGATIVE.

Each of the 50 respondents (students) provided separation
judgments among the paired combinations of the 17 semantic
objects; then using the semantic differentials the 11 public
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figures were evaluated. After a five-week period, the
respondents were again administered the same instruments.

The two scaling methods are compared in terms of reliability,
dispersion/discrimination, and assumed properties.

Table 1 presents the coordinate matrix obtained from the mean
S matrix. The first dimension corresponds to evaluation as
defined by Osgood and Tannenbaum (1957) . The second dimension
represents political position.

TABLE 1
Coordinate Matrix for Three Dimensions
1 2 3%
1. Favorable 56.78 29.62 42.46
2. Myself 52.18 -24.19 -10.07
3. Good 46.47 -1.57 -1.64
4. Positive 46.15 12.36 17.85
5. McGovern 18.63 -42.00 -27.36
6. Ervin 17.20 -3.14 0.01
7. Nader 13.16 -5.27 -11.03
8. Kennedy 9.60 -0.92 -13.03
9. Humphrey 2.84 1.97 3.88
10. Ford -7.34 19.36 -7.89
11. Rockefeller -8.86 3.64 -11.10
12. Reagan -12.74 0.72 -10.97
13. Wallace -30.25 11.23 -15.78
14. Nixon -44.14 47.28 -28.93
15. Unfavorable -48.27 -17.84 25.28
16. Bad -55.07 -15.89 22.50
17. Negative -56.29 -15.36 25.84

*The Eigenvalue for the third dimension is negative; in terms of
absolute value it is the third largest. Further, it is the
second most reliable dimension.

Figure 1 is a graphic presentation of the first two
dimensions.
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FIGURE 1

Plot of first two dimensions of ratio judgment scale.

The mean ratings of the semantic differential are reported in the
second column of Table 2. The third column of Table 2 gives the
corresponding evaluation scores as captured by the coordinates on
the first dimension of the multidimensional space. The two
methods of measuring evaluation are nearly identical (r = .97).
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TABLE 2
Mean Scale Values: a) semantic Differential, b) MDS, <)
Transformed Semantic pifferential

Semantic Transformed Semantic
Semantic Object Differential MDS Differential**
Good 3.00%* 46.47 54.19
Favorable 3.00% 56.78 54.19
Positive 3.00% 46.15 54.19
Myself 1.73 52.18 30.66
Nader 0.78 13.16 13.05
Kennedy 0.68 09.60 11.20
Ervin 0.52 17.20 08.24
McGovern 0.31 18.63 04.34
Ford 0.28 -07.34 03.79
Humphrey 0.10 02.84 00.45
Rockefeller -0.12 -08.86 -03.62
Reagan -0.25 -12.74 -06.03
Wallace -1.35 -30.25 -26.42
Nixon -1.39 -44.14 -27.16
Bad -3.00* -55.07 -56.99
Unfavorable -3.00* -48.27 -56.99
Negative -3.00* -56.29 -56.99

*Fixed by Convention

*xTransformed semantic differential scale values given by the
regression equation:

-1.40 + 18.53 (differential): R = .97; F = 218; df = 1, 15; p <
.0001.

The linear regression of the evaluative (MDS) dimension onto
the scores given by the semantic differential yield the equation:
transformed semantic differential = -1.4 + 18.53 (differential);
the transformed values are reported in the fourth column of Table
2. The high correlation (.97) between the scales represents a
high degree of convergent validity, i.e., both scales are
measuring the same quantity.

Reliability

Test-retest correlations were used to estimate reliability.
The test-retest correlation for the elements in S is .86.

The separation matrix S only represents the dimensions in the
coordinate matrix. some of the dimensions, however, may be more
reliable than others. ToO check for differential reliability, a
least-squares rotation (see Chapter 12)
was used to match the pretest and postest coordinate matrices.
The values on each pretest dimension were then correlated with
their corresponding posttest values. A plot of the correlations
is given in Figure 2.
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Figure 2 shows the first three dimensions to be the most
reliable (r = .97, .81 and .87). Visual inspection of Figure 2
also shows that reliability (test-retest) is highly correlated
with size (absolute) of the eigenvalue: Large dimensions are
more reliable than small dimensions. Here it is interesting to
note that the third dimension has a corresponding negative
eigenvalue--indicating that the coordinates on this dimension are
imaginary numbers, i.e., the three dimensions define a complex
space.

The test-retest reliability coefficient for the mean semantic
differential scores is .99.
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FIGURE 2
Plot of test-retest correlation between dimensions. Dimensions

are rank ordered ir. “erms of size (absolute eigenvalue).
Dispersion and Precision of Measure

The two measurement methods yield compariable reliabili*y
coefficients (.99 versus .97); the correlation between the scales
is .97. Inspection of Table 3 shows greater dispersion for the
dimensional (MDS) scale. 1In every case (except for Kennedy), the
obtained dimensional (MDS) scale shows greater dispersion than
the transformed semantic differential scale. This analysis
supports the popular contention that category scales "compress"
or "distort" scale response. In general, there is a nonlinear
relationship between category scales and those based upon
magnitude estimation methods (Lodge, 1981, p. 15).
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TABLE 3
Dispersion Comparison of the Evaluative Dimension (MDS) and
Transformed Semantic Differential

Semantic Evaluative (MDS) Transformed Semantic
Object Dimension Differential
Myself 52.18 30.66
Nader 13.16 13.05
Kennedy 09.60 11.20
Ervin 17.20 08.24
McGovern 18.63 04.34
Ford -07.34 03.79
Humphrey 02.84 00.45
Rockefeller 08.86 -03.62
Reagan -12.74 -06.03
Wallace -30.25 -26.42
Nixon ~-44.,14 -27.16
Standard Deviation 24.84 15.99
Variance 617.05 255.96

Measurement Assumptions of the Semantic Differential

Figure 3a gives a graphic presentation of two measurement
properties assumed by the semantic differential: (1) the
assumption that each of the two bipolar discriptors are the same
distance from the origin (equi-separation), and (2) that the
angle relative to the origin is 1800 (collinearity).

Figures 3b and 3d are graphic presentations of the failure of

each of these assumptions.
a) ASSUMED MEASUREMENT PROPERTIES

Good Origin Bad

PR SRR SIS S S

b) FAILURE OF EQUI-SEPARATION ASSUMPTION

Good Origin Bad

e i e [ . [

c) FAILURE OF COLLINEARITY ASSUMPTION

Good Bad
— I
— e e
Origin
FIGURE 3

Assumed measurement properties of semantic differential.
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Ratio judgments of separation do not make the assumptions
given in figure 3a.

From the data in S, one can determine the measured length of
bipolar discriptors from the origin as well as the angle with
respect to the origin. Using the mean matrix S, this was done in
the following way. First S was partitioned into a submatrix
whose elements represent separations among the six semantic
objects: GOOD, BAD, POSITIVE, NEGATIVE, FAVORABLE AND
UNFAVORABLE.

The B* double-centered scalar products matrix (see Torgerson,
1958, p. 258) was formed and used to find the required lengths
and angles. The diagonal elements of B* represent squared length
from the origin; the off-diagonal elements of B* represent the
product of two lengths and the cosine of the angle relative to
the origin.

The obtained lengths (separations) from the origin are: GOOD
(45.39), BAD (57.14), FAVORABLE (66.32), UNFAVORABLE (51.98),
POSITIVE (51.73), and NEGATIVE (57.68). The obtained angles are:
GOOD-BAD 168), FAVORABLE-UNFAVORABLE (152), and POSITIVE-NEGATIVE
(138) . No significance testing was done, so it was unknown
whether these statistics are within the bounds of sampling error.
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