VARIATIONAL PRINCIPLES OF COMMUNICATIONI

Joseph D. Woelfel

Many communication scholars believe that modern communication
theory should advance (or already has advanced) beyond "simple
mechanical models" toward some less simplistic and more
sophisticated theory. As I have suggested elsewhere (Woelfel,
1977), however, it is by no means the case that conventional
communication theory is or was in any way mechanical, and in fact
arguments against the mechanical character of communication
theory for that reason have a "straw person" character to them.
Quite the contrary, it is evident that most communication theory
is predominantly premechanical in character. The development of
mechanics itself rests on certain formal logical advancements
which communication theorists for the most parts have not yet
adopted, and so it is the contention of the present paper that
adoption of a specifically mechanical model of communication
would be progressive rather than a retrograde step for :
communication theorists. In this chapter, specifically, it is my
intention to attempt to model certain communication phenomena in
terms of some of the most powerful of mechanical forms, following
what are most frequently called "variational principles,” At the
same time, I hope to illustrate the logical developments required
for such a step and to show how communication theory has as yet
failed to pass through these developmental stages.

The development of a variational mechanical model of any
phenomena depends specifically on four logical operations. The
first of these is what I have called elsewhere (Woelfel, 1977)

the Cartesian measurement model. The second is the development
of functional representations of variables in terms of the ratios
given by measurements. The third requires the recognition and

analysis of residual terms in the functions, and the fourth
requires the stipulation of minimization of stationary
principles. Once these steps have been accomplished, the
equations of motion or change for any configuration of the system
of variables under consideration can always be written down.

The Cartesian Measurement Model

The first step in the development of a mechanics of any
phenomena is the adoption of the Cartesian measurement model.
This model consists entirely in arbitrary agreements among
participating scholars to measure phenomena as ratios to an
arbitrary standard unit. (Descartes, of course, did not invent
this method, but we refer to it here as the Cartesian model due
to his explicit formal recognition of this model as a complete
slternative logic in contradistinction to the categorical logic
~f Plato, Aristotle and Aquinas which dominated the intellectual
arena prior to the Renaissance).

We have described the Cartesian or ratio method of measurement
slsewhere in greater detail (Woelfel, 1977; Woelfel & Fink,
1980), but it is useful here to point out the fundamental
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difference between this model and the categorical logic. The
categorical logic is a logic of inclusion and exclusion based on
category membership. Reasoning or deduction is possible only on
the basis of certain types of overlaps among categories. Thus it
is evident that if Socrates is a man, then he is mortal, because
the entire category man is included in the category mortal.
However, it is not possible to determine whether or not Shiela is
a man on the basis of knowing she is featherless, since only part
of the category featherless overlaps with the category man. 1In a
category logic, only three outcomes are possible: yes, no and
doubt ful, that is, no answer. An "equation” or syllogism in
category logic is either correct, wrong or inconclusive.

In Cartesian or comparative logic, however, relationships are
not only expressed in terms of inclusion and exclusion, but as
infinitely variable numerical proportions or ratios. Thus, we
may say that B is 2.6 times as long (or bright, or friendly) as
A. Furthermore, if C is 5.2 times as long (or bright, or
friendly) as A, then C is twice as long as B.

There are two advantages to this system which are necessary
for a competent mechanics. Tirst, this system can carry more
information in a quantitative sense than the categorical logic;
it is much more informative. Secondly, since it is gquantitative
rather than categorical, when deductions based on this system are
wrong (that is, when they yield outcomes that do not correspond
to measurements) they are not only wrong, as would be an
erroneous deduction within a categorical syllogism, but they are
wrong by a measurable gquantity. Deductions within a categorical
logic are either wrong or right, but each deduction within a
~omparative logic leaves a residual term. If the deduction is
perfectly correct, the residual term is zero; as errors increase
the residual term grows larger. The residual term is important
as we shall see, since it provides not only a basis for knowing
how accurate the logical system may be in any particular
instance, but because it provides at once the basis for
correcting errors and developing general principles for dealing
with the phenomena in the future.

As we shall see, every principle of mechanical physics depends
on comparative measurement and comparative logic, and no
principle of physics is stated in any other than comparative
terms. Insofar as the measurement model of communication is
still categorical, as it is for the most part, it cannot be
described as "mechanical."

Functional Representation and Time

Just as the logic of categorical systems is based on the
syllogism, the logic of comparative measurement is based on the
function, a word introduced in 1694 by Leibnitz. The most
elementary function within a comparative logic is the function by
which the position of an element is determined. As we suggested
earlier, the length of an object (or its friendliness or
brightness, or any attribute whatever) is expressed as a ratio to
some arbitrary length (or unit of length, unit of brightness,
unit of friendliness, etc.). This arbitrary unit may be thought
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of with no loss in generality as a coordinate axis, and the
position of the element to be measured is then given as a (ratio)
function of the original arbitrary element. Thus if the element
of length is the meter, and we imagine a coordinate axis laid off
in the direction of the meter, the position of the end point of
the element to be measured is given by

y = f(m)

where, y = the length of the unit to be measured
f = the function
m = the length of the unit (one meter) .

If the element to be measured is twice as long as the unit, we
could write the function more explicitly as

y = 2m

Less well-known is the fact that the Cartesian measurement
model is completely abstract and rests on no empirical
foundation, and hence it may be applied without modification to
the measurement of any experience whatever, even an experience as
abstract and personal, for example, as affection (Woelfel, 1977;
Woelfel and Fink, 1980; Hamblin, 1973). We may choose as an
arbitrary standard unit, for example, the amount of affection one
feels for the average stranger, and represent the amount of
affection one feels for any arbitrary person or object as a
function of this standard. We might like a friend twice as much,
for example, and thus write

y = f£(x) (1)

where y = the amount of affection we feel for our friend,
f = the function = 2
X the amount of affection we feel for the average
stranger, and so we write again

y = 2X (2)

This, of course, is the same functional form we wrote earlier
to describe the length of an arbitrary unit, or the position of
an arbitrary object. The logical form is independent of the
experience it represents.2 In order to illustrate the
development of a mechanics of communication rather than physical
experience, we will continue to refer to affection toward a
friend as the dependent variable, but it should be recalled that
we might just as well refer to a physical point.

so far, by adopting this system of measurement over the
tegorical system we have gained some advantage, in that it is
o informative to say how much we care for the friend than
~wly to say that we do care. But, we gain a second advantage
:~rsrtant as the first, and that is the ability to define new
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yo to avoid confusion). This allows us to create the new
variable

Ay = y1 - Yo (3)

While this step is so simple that the reader may lose
patience, it is worth trying to see how the same step could be
accomplished using categorical logic. Indeed there is not limit
to the new variables we can create within this logic. We create
the variable time, for example, by the same ratio method3, and
designate the time of the first measurement as t; and the second
as tg so that

At = t] - tg (4)

Combining these two functions, we may create yet another new
variable

v = Ay/ At (5)

where v is the ratio of the change in attitude to the change in
time, or thus the rate of change of the attitude, or velocity of
attitude change. In fact, this variable represents the average
rate of change of the attitude over the interval At, and leaves
us ignorant of the rate of change or velocity at any precise
moment, but we can solve this difficulty by imagining the time
interval At growing smaller without limit and, as it does so,

the average velocity across the (even smaller) interval can be
~ade as accurate an approximation as we like to the instantaneous
velocity. This instantaneous velocity is referred to as the time
derivative of the position (or attitude) as is symbolized by

Ay dy
Lim At = dt (6)
At - 0
so that

Vi, therefore, represents the instantaneous velocity or rate
of change of the attitude at time t.

Inertial Principles and Residual Terms

It should be clear that equation (7) defines the velocity of
the attitude or its rate of change at a specific instant of time,
and that we are free to measure the velocity an any number of
such instances. This is turn gives rise to the possibility that
the velocity might itself change over time, and hence be itself a
function of time, or

v = f(t) (8)
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It is at this point that arbitrary but important stipulations or
principles are introduced into a theory if it is to be a
mechanical theory. These stipulations are rules in the sense
Cushman and Tompkins (1980) speaks of them, but they are rules
which scientists agree to honor solely for the purpose of
developing a common framework for understanding and communicating
about their experiences. When they were originally postulated,
their inventors and followers usually thought they were
discoveries about the nature of reality, but later theorists
realize they are in fact definitions of a frame of reference
against which we gauge our experience. The first of these,
(usually called Newton’s First Law, due to the old way of
thinking) says that for any system which is left alone, that is,
which is not in communication with its near surround, there will
be no changes in velocity. We might write

v = f(t) = constant (9)

to indicate that velocity is a constant of the time, or using the
notation of the calculus

ap = dv/dt = 0 (10)

where ay = the acceleration of the attitude at time t, which
means that the change in velocity with regard to the change in
time (acceleration) is zero. This principle is not meant, of
course, to say that changes in velocity are impossible, but
merely that any such change must be accounted for by means of
some communication of the moving element with its environment.
If we evaluate the derivative of the velocity with regard to time
at some point in time (i.e., enter numerical measurements into
expression (10)) and find that it does not equal zero, but rather
eguals

ap = dv/dt = 0 + K , (11)

then the variable K expresses the magnitude of the communication
from the environment. The actual value of this variable will
depend on the arbitrary units in which v and t are themselves
measured. But if, perhaps at some other time or for some other
sample of data, we evaluate the same expression and find

atl = dVl/dtl =0 = Kl ’ (12)

then the ratio K/K;, will not depend on the units of measure, and
will represent the ratio of forces impressed on the system from
the environment at the two times or for the two samples.

We have written expressions (11) and (12) in what may seem a
strange form to illustrate that these forces are measured as
residual or "left-over" terms from what our stipulations would
have led us to expect had the system been left alone, and we will
see again and again that what we call "explanatory variables" are
always residual terms. The process of scientific explanations
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always requires us to set up our reference frames in such a way
that the residual terms are minimized, and then to seek processes
involving communication between the changing element and its
environment which are correlated with the residual terms,

One of the most important residual terms in mechanics is
force, and force may be determined up to arbitrary constant by
the method just described as

Fl/FZ = K/Kl = at/atl . (13)
this means that the ratio of forces is defined as the ratio of
the observed accelerations. In this sense, force as a residual
term is defined as "that which produces acceleration." As real

as the concept of force has come to be to us after centuries of
usage, we should nonetheless realize that there is no such entity
in nature as "force," but rather force is a logical device which
is wholly a product of the arbitrary conceptual system we have
created to describe our experiences. It has as its counterpart
one of the other most important residual variables in mechanics,
inertial mass, which is def‘ned up to an arbitrary constant as
the inverse ratio of the accelerations of any two elements under
a constant force, or

ml/mz = A2/A1 ’ (14)
where my; = the mass of the 1lst element
my, = the mass of the 2nd element
A; = the acceleration of the 1lst element
A, = the acceleration of the 2nd element

It is easy enough to deduce from (14) that mass is the reciprocal
of force, or "that which resists acceleration." Mass does not
mean "quantity of matter" as Newton thought it did, but is
instead a residual term which accounts for the differential
acceleration of different elements under constant force. There
is no way to measure the mass of any body short of pushing it
with a known (i.e., previously measured) force and measuring its
resistance to that force relative to other elements (or
attitudes) subject to the same force. Mass is not a quality of
material objects, and it is every bit as sensible to say that
some attitudes are harder to accelerate (have more mass) than
others as it is to say that some material objects are harder to
accelerate than others.

As long as we deal with only one attitude, there is not need
for inertial mass to enter the equations, since inertial mass
only refers to the resistance an attitude offers to acceleration
relative to other attitudes. When we consider more than one
attitude, however, we must modify equation (11) to include the
mass of the attitude.If the mass does not vary with the time,
i.e., if

m = f(t) = constant, (15)

so that
dm/dt = 0 ,
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we may write (11) as

m (dv/dt) = F
or
ma = F ’ (16)

which is Newton’s Second Law. We should not consider this a
discovery about nature, however, since it is a consequence of our
stipulation given in (10).

If the mass does depend on the time, then we must modify
expression (14) to make it somewhat more general, and we obtain

d/dt (mv) = F (17)

Once again, this generalized equation should not be taken as a
discovery about the nature of the world, but rather as a
statement of principle. 1In words, equation 17 says that neither
the mass nor the velocity nor both of them together ought to be
expected to change spontaneously, but rather any change must be
considered the result of the application of some force. The
gquantity in brackets in (17) is called the linear momentum of the
attitude, and (17) asserts that any changes in linear momentum
must be the result of some communication with the environment,
and, in fact, must be equal to the magnitude of that
communication.

D’Alembert made this point explicity by suggesting we write
(17) as

F - d/dt (mv) = 0 , (18)
and create the variable
I = - d/dt (mv) , (19)
which allows us to write
F+1I=20 . (20)

We are able to interpret this new variable I as the force due to
the motion of the attitude, or what we may call the inertial
force, while we may refer to the force resulting from
communication with the environment as the impressed force. Thus
equation (20) may be interpreted as a principle which says that
the impressed forces plus the inertial forces (forces due to the
motion) will sum to zero. As Lanczos says (1962, p. 30) :

A given system of impressed forces will generally not
pe in equilibrium. This requires the fulfilling of
special conditions. The total virtual work of the
impressed forces will usually be different from zero.
In that case, the motion of the system makes up for the
deficiency. The body moves in such a way that the
additional forces, produced by the motion, bring the
balance up to zero. In this way d’Alembert’s principle
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gives the equations of motion of an arbitrary
mechanical system. (Emphasis in original).

So far, by adopting the Cartesian measurement rule we were
able to construct two quantitative primitive variables, position
(or length) and time. From these and the functional method of
comparative logic, we have derived the additional descriptive
variables velocity and acceleration, the additional explanatory
variables force and mass, and the mixed variable, momentum. None
of these variables have any epistemological status other than as
creations of the logical system, but nonetheless they are of
great utility in constructing consensual and informative
statements about our experiences. By saying that these variables
have no epistemological status I mean that their form does not
depend exclusively on any inherent characteristics of the
experiences out of which they are modeled, and so they may be
applied to any experiences whatever, whether physical or
otherwise. 1In fact, it may well be that we call physical those
experiences which have already been cast successfully into the
form of these variables. Two other variables will be of great
interest to us. The first of these can be obtained, again
through the logic of functional analysis, by multiplying equation
(16) by the velocity, dx/dt to obtain

vF = vma = m/2 d/dt (vv) = d/dt (mvZ/2) , (21)
and, multiply through by dt
Fdx = d (mv2/2) i (22)

The quantity on the left side of (22) is the product of the
force and an infinitesmal distance, and represents the work done
by the force through the interval of distances dx, while the
quantity on the right hand side of (22) represents the
differential element of _he kinetic energy, so that

T = mv2/2 (23)

defines a quantity called the kinetic energy, or the energy that
an element (or attitude) has by virtue of its motion. With this
in mind, we can understand (22) as a definition which requires
that the differential element of the work is equal to the
differential element of the kinetic energy. The work done, of
course, 1is to change the magnitude of the kinetic energy. If the
attitude moves through no force, there is no change in the
kinetic energy.

Even though the mechanical system is not yet complete, it has
already become useful as a vehicle for recording and ordering
experiences. We may find, for example, after we deflect the
attiutde from its original postion Xy to another position xq
that, even though subsequently left alone, that is even though no
communication between the attitude and its environment takes
place, nevertheless the attitude tends to return to its original
position. Unlike the relationships we have discussed so far,
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this outcome is not required by the internal logic of the
mechanical system, and we might just as well find that the

attitude is "content" to remain wherever we put it. The extent
to which an attitude tends to return to its starting point,
therefore, represents an empirical finding. In fact, some

research has observed this effect (Woelfel, Holmes, Cody and
Fink, 1977, for example among others), although it is outside the
scope of this paper to discuss the empirical character of the
attitude domain. If this should be the case, however, we can
obviously suggest that the work done moving the attitude from x;
to xp should be equal and opposite to the work required to move
it back again from x, to xq. Given this fact, along with the
relationship between work and kinetic energy established in (22)
and (23), we may see that the work required to move the attitude
from xq to xp is given by

fxlxz Fdx = Typ - Tx1 = - Jx2¥l Fax = Ty1 = Tx2 . (24)

where Ty, = the kinetic energy of the attitude of xj
T,1 = the kinetic energy of the attitude of xj
and.fxg;l Fdx = the total work exerted through the interval
from xq1 to xo.
Equation (24) means that the total work exerted through the
distance from x1 to xp equals the change in the kinetic energy.
Once again, if the force is zero (or perpendicular to the
direction from xq to xp) no work is done and the kinetic energy
remains constant.

From our definition (16) we know that the attitude will not
accelerate back towards its starting point unless exposed to some
force, but, since there is some point at which the attitude is
stable, we know that the restoring force is itself a function of
the position of the attitude, or

F = FE (%) ’

then we can see that the sum of these forces acting through
differential elements of distance between any two points will
pehave similarly to (24). We introduce the new quantity, V(x),
which is given by

Vix) = [,%5 F(x)dx = - Jug¥ F(x) dx ,  (25)

where V(x) is called the potential energy, and s is selected as a
standard reference point. Potential energy 1is that energy an
element (or attitude) possesses by virtue of its position, and as
long as the forces acting on the attitude depend only on its
position, we may write following (24) and (25)

Typ - Tyl = Jyx1®S FGodx + [yg*2 F(x)dx

[ XV Fx)dx + [,g¥2 F(x)dx

I

Vxl - sz . (26)
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From this we can see that
Ty + Vg1 = Txgp + Vgp = T +V = E , (27)

where E is a constant called the total mechanical energy. As
long as no forces from the environment impinge on the attitude
system, this quantity, the total energy, remains a constant, or
is conserved.

Neither kinetic nor potential energy exist in nature other
than as a consequence of the comparative logic used and the
stipulations or principles laid down, but they provide extremely
useful conceptual structures against which we may gauge or
experiences, particularly when defined in such a way as to remain
invariant under conditions of no communication with the
environment. Both kinetic and potential energy are built up of
several orders of ratios from the original ratios on which
measured values are established, and so are completely
consequences of the character of the comparative logic. They
could not be established in a category logic.

Another such variable, linear momentum, which was defined in
(17) is also conserved during conditions of isolation from the
surround. If we multiply (16) by dt we obtain

Fdt = m(dv/dt) dt = d(mv) = dp ' (28)

where p = the linear momentum,
Integrating between two times, t; and t, yields

fc1%2 Fdt = Prp - P , (29)

where the quantity on the left hand side of (29) is called the
impulse delivered by the force F during the interval from t; to
to, Equation (29) define. the change in linear momentum over the
interval of time to be equal to the impulse delivered by the
force, and simultaneously asserts that the linear momentum will
remain invariant if no force from the environment is present.
This system of variables as well as the interrelationships
they obey constitute a pattern against which we may express our
experiences. The definitions we have presented of conserved
quantities within the system should not be taken as arguments
that such conservative systems exist, therefore, since no system
that actually exists is absolutely conservative insofar as we
know. This is equivalent to saying that no empirical system 1is
absolutely isolated from its environment, and, furthermore, 1is an
acknowledgement that the relationships any system has with its
near surround are likely to be too complicated to be expressed in
minute detail. To the extent that quantities like energy and
momentum are not found to be conserved in an empirical system,
non-conservative forces must be postulated. These departures
from the conservative ideal are therefore attributed to "non-
conservative forces," which may in turn be characterized as
forces that cannot be ascribed to some specific action of the
environment. As Triffet (1968) suggests, "...nonconservative

156



forces can usually be recognized by the fact that they are not
gradients of time-independent scalar potential functions."
Lanczos (1962) calls them "polygenic" for the same reason. In
any event, insofar as they are residuals or "left-overs" they are
nonetheless subject to calculation. 1In general, they will be
found to be functions of time or velocity, and so we may modify
(16) to yield

ma - F¢ = 0 (28)

where FC = conservative forces
to show that the inertial forces (ma) minus the conservative
forces equal zero when the system is not under the influence of
any nonconservative forces. This makes it easy to take account
of time-dependent nonconservative forces by means of the
expression

ma - F¢ = F(t) P (29)

and similarly, we may take account of velocity-dependent
nonconservative forces by writing

ma - F€ = F(v) ' (30)

There is, of course, no limit to the complexity of the
situation which may be dealt with in this way, and we may
consider nonconservative forces which depend on both the
velocities and the time by setting

ma - F¢€ = F(v,t) , (31)

where the nonconservative function F can take on any form
whatever.

Equation (29) does not constitute so much a discovery as a
means of searching, for it indicates that some anamoly has been
detected in the system’s performance. What is actually
accomplished is simply the naming of the anamoly (force) and then
its expression as a function of time. In this, time serves as a
surrogate variable against which other processes may be
calibrated so that they might be compared to each other.

Time-dependent forces are commonplace in communication
phenomena, and particularly when they are cyclical, as they often
are (as, for example, in daily or seasonal fluctuations) they can
easily be controlled, even if unexplained.

Velocity dependent nonconservative forces are also common, and
frequently depend on the velocity in a fairly simple way. Forces
~f friction or the resistance due to a viscous medium are
ezamples of velocity-dependent forces which are relatively simple
function of the velocity for physical systems, as is random error
in message transmission within human communication, or random
forgetting in cultural processes.

As a simple example of nonconservative forces within a
communication system, consider a single attitude which has been
dislodged from its equilibrium position by some message. The
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notion that an equilibrium position exists means that there is a
potential function, that is, that the force acting on the
attitude depends on it’s position. We further assume that random
forces proportional to the velocity of attitude change must be
considered (although it is useful for purposes of the example to
consider them completely unknown) and soO we may write

ma + Cv + Kx = 0 , (32)

which means that the system will be in equilibrium under the
forces due to inertia (ma), the nonconservative velocity-
dependent forces (Cv) and the restoring forces due to position
(Kx), of course assuming there is no other communication with the
environment. The constant C represents the magnitude of the
resistant force per unit of verlocity, and the constant K
represents the force per unit of deflection from the equilibrium
point (assuming such forces are linear).

Equation (32) shows clearly that the acceleration of the
attitude will be zero at ecunilibrium, but that the further the
attitude is deflected from equilibrium, the stronger will be the
forces which attempt to restore it to equilibrium. The more
massive the attitude, the less quickly it will respond to those
restoring forces. The higher the velocity of the attitude
change, the greater will be the resistive forces slowing the
change.

There is good reason to believe this equation or one much like
it describes (at least an order of approximation) the process of
attitude change in humans and cultures. The restoring force is
necessitated by the commonplace assumption in communication
theory that their exists an equilibrium position for beliefs,
attitudes or indeed whole cultures. This requires position
dependent potentials. The mass term recognizes the empirical
facat that some attitudes, pbeliefs and cultural elements are
harder to change than oi..ers, and we simply specify some scalar
value, based on measured resistance to change, which guantifies
that differential resistance. The velocity-dependent force is
required since, as a little thought will show, otherwise the
system, once deflected from the equilibrium position, woula
oscillate endlessly around the equilibrium point.

This equation (32) models the system when it is isolated from
its environment, that is when no communications are being
received from the surround. It is easy, using the comparatiave
logic, to extend (32) to the case where communication from the
surround is present, so that

ma + Cv + Kx = F (33)

where F represents the force of the external communication. If

the external communication varies with the time, we may write

ma + Cv + Kx = F(t) . (34)
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Equation (34), therefore, will express the state of motion of the
attitude at any time as a function of the communication received
from the surround.

Systems of Attitudes and Beliefs

Up to this point we have dealt only with a single attitude,

which may be interpreted as a single "object" (a friend) whose
position varies on a single dimension (or attribute, in this
case, "affection"). The comparative logic, however, makes it

possible to generalize this cse to any degree of complexity. As
a first step, we may consider the case of several objects varying
independently along a single attribute. (By "independently", we
mean that the change in position of any one of the objects has no
effect over the position of any of the other objects) .

In this case we may generalize (32) to the set of n
independent equations

miay + Civi + Kixi = 0 . (35)

i=1,2,...,0
where n = the number of objects.

similarly, equations (33) and (34) can be generalized by
adding the index i to the force term. If the motions of the set
of n objects are not independent of each other, however, that is,
if the motion of each object influences the motion of each of the
others, then the motion of any object j depends_on the
characteristics of the others, and we may write

miqaq * Cijvj + Kisxy = 0 ' (36)
i, = 1,2,...,n,

or, for the case in which the system is in communication with its
surround,

mi4ay + Cijvj + Kinj = Fj ’ (37)

or, when the communication with the surround it time-dependent,

mijaj + Cijvj + Kinj Fj(t) , (38)
While equations represented in (38) are quite compact, they
describe a very complex system of interrelationships. Briefly

the equations in (38) say that the state of motion of any of the
attitudes j is determined by the masses of the jth attitude and
all n-1 of the others, by the resistive forces due to the
velocities of all n particles, by the n(n-1)/2 pairwise forces
expressing the mutual interactions of their potential energies
due to their positions, and by the forces from outside the system
working directly on the jth attitude.

As complicated as they are, equations (38) deal only with
motions along a single dimension or attribute, as we mentioned
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earlier. 1In a realistic individual or cultural belief system,
the definition of each object involves positions and motions with
regard to many attributes, and so the equations in (38) remain
incomplete. If each of the attributes is perpendicular
(independent) to each of the others, then we may proceed simply
by adding another index 1 to (38), but it is possible to show a
more general procedure that will work regardless cof whether the
attributes are orthogonal or not, or even in the case of general
curvilinear coordinates.

As we have seen, the state of motion of a system of belief may
be described completely in terms of its potential energy, kinetic
energy and outside (impressed) forces. This as we have seen is
not a description of "reality”™ but rather a consequence of the
logic of the descriptive system which is call "mechanical.” When
a belief changes within more than one dimension, the comparative
logic system, based as it 1s on ratios, allows us to establish
the proportions of the kinetic energy, potential energy and
forces which are projected on each of these dimenstions. For the
case of kinetic energy these variables may be projected on the
two generalized coordinates axes (dimensions) g; and gp. The
vector V represents the (arbitrary) velocity of an arbitrary
belief of mass m. The component V; of V projected on g; is given
by the ratio V/V, or, by an elementary result of geometry, Vi =
cos . Working in the other direction, V itself may be given in
terms of its components along the axes gq; and gy by the
generalized theorem of Pythagoras

v2 =V12 + V22 - 2VqVy cos © . (39)

Multiplying through by 1/2m gives the kinetic energy as a
function of its projections on the generalized coordinates. When
the generalized coordinates are linear and orthogonal (i.e.,
independent), ® = 0 ana .he scalar product term 2VVy cos © in
(39) vanishes and the components of the kinetic energy become
linearly additive. Even if the coordinates P, and P, are curved
in an arbitrary way, (39) will still be true for arbitrarily
small elements, and may write

dvZ = dvy2 +dv,? - 2dvqV, cos @ (40)

where the d’s refer, as previously, to the differential element.
The component of the velocity projected on the ith axes 1is
actually a ratio if infinitesmal elements, controlling for the
projections on the other axes, which is represented by the
partial derivative

av/ dq; (41)
and similarly, the component of the kinetic energy with regard to
each of the generalized coordinates will be given by the same

formalism as

0T/ 995 , (42)
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as will the components of the potential energy
ov/ dai - (43)

These expressions (41), (42) and (43) are ratios of infinitesmal
arcs of the curved coordinates, controlling for all the other
such ratios, and are called therefore partial differential
slopes. They are analogous to partial linear regression
coefficients, except that they are generalized for the non-linear
case.

Now that we have established the way in which the kinetic and
potential energies will project on any arbitrary set of
generalized coordinates, it only remains to establish in a
precise way how these same energies are related to the motion of
a system on one dimension and a generalization to any number of
arbitrary coordinates is possible.

Although the chain of reasoning is lengthly it is not
difficult. To simplify the notation somewhat, we will define the
derivative with regard to time according to Newton’s notation, SO
that

dg;/dt = C.Ii = Vgqi . (44)

where gj = the position of the belief projected onto the ith
generalized coordinate
Vgi = the velocity of change of the belief projected
onto the ith generalized coordinate.

Similarly, the second derivative
d/dt dqi/dt = ddj/dt = a2qy/at? = &3 = agi o« (49

where agj = the acceleration of the belief projected on the
jth generalized coordinate.

Using this notation, and considering the one dimensional case

where the belief or attitude is varying only along a single

attribute x we may write

5 = d/dt 1/2m %2 = m % X (46)

which says, in words, that the time-derivative of the kinetic
energy equals the mass times the velocity times the acceleration.
This suggests that we take the derivative of (46) to eliminate
the velocity term (recalling that a derivative is a ratio), SO
that we obtain

.

d/dx T = mx = MNma , (47)

which says, in words, that the derivative of the time derivative
of the kinetic energy with respect to velocity equals the mass
times the acceleration. This means that due to the comparative
method we are able to express the mass and acceleration of a
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pelief or attitude (or any object whatever) in terms of its
knietic energy alone.

As it turns out, we can express the force acting on a belief
(at least conservative forces in the sense which we discussed
them earlier) in terms of its potential energy. As we say in
expression (25), the increment in potential energy equals the
negative of the work done. But work is force through distance,
so the derivative of the potential energy with regard to the
distance is the force acting across an arbitrarily small
distance. Formally, as we saw in (25) which we rewrite here
without the subscript desginating the x dimension, the potential
energy V is equal to the integral of force over distance, or

V o= [;2 Fdx (48)
and so the potential energy at a point will be
dv = Fdx . (49)
Dividing both sides by an arbitrary small distance dx gives
dv/dx = F , (50)
This, of course, is the ratio of the change in potential energy
to a change in position of the belief for very small changes in
position.

Since we know that, for a conservative system, F = ma, we may

write (using (47) and (50))
d/dk T = d/dx VvV (50)
or, equivalently,
d/dx T - i/dx VvV = 0 . (52)
This is equivalent to
d/dt (dT/dx) - dv/dx = 0 . (53)

When working in a curvilinear non-orthogonal system, we need
to perform these operations relative to the components of the
kinetic and potential energies along the generalized coordinates
di, as we saw earlier. We learned how to do this in (42) and
(43), and so we may write

d/dt (dT/dqy) - 0ov/dgy = O (54)
or, what is the same thing,
d/dt (9(T-V)/dqy) - O(T-V)/dqy = O . (55)
Setting L. = T - V, we may write (55) as

d/dt (dL/dqy) - OL/dgq; = O . (56)
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Expression (56) is the usual formulation of the equations of
Lagrange for a conservative system not in communication with its
environment. If forces from the surround are impressed on the
system, we may write

d/dt (dL/dgq;) - OdL/dqy = Qi (57)

where the Q4 refer to the generalized force components directed
along the generalized coordinates.

Although very compact, the Lagrangian equations can encompass
virtually infinite complexity, and the ramifications of these
equations is far beyond the scope of this paper. Nevertheless we
can hint at some of the range of communication systems to which
these equations may refer by rewriting (57) as

d/dt (dT/dq; - 0V/dqy) - (dT/dgy - 0V/dqj) = Qi (58)
and then
d/dt 9T/dq; - d/dt dv/dgj + oV/dg; - dT/dq; = Qi . (59)

As we have already noted, if the system is isolated and
conservative, the right hand side Qj vanishes. If the potential
energy does not depend on the velocity (as it usually does not)
the second term on the left vanishes; if the kinetic energy does
not depend on position (as it usually does not), the the fourth
term on the left-hand side vanishes. 1In this case, the equations
reduce to Newton’s familiar equations (14). This will also be
true if there is no potential function, in which only the first
term will remain, but, in the absence of a generalized force term
Qi on the right-hand side, this term will also vanish and there
will be no acceleration.

If the knietic energy does depend on the velocities (as it
usually does), and if a potential function can be defined as a
function of position (which is a condition for a system having an
equilibrium value, whether or not it is at or near such a wvalue
at any time, and if there are dissipative forces dependent on the
velocities, then the second term on the left hand side will not
vanish and we will find a linearly resistive term like the second
term in (34). While this is only the briefest of sketches of the
potential of the Lagrangian form, it should suffice to show that,
while the Lagrangian equations are capable of expressing or
describing virtually any communication system or system of
peliefs, attitudes and their changes, it does not impose itself
on the system modeled, but rather adapts its shape to the system
observed. Moreover, it is a language and logic capable of a much
fuller description of these complexities than is a verbal and
categorical language.

Moreover, the treatment is greatly simplifying. This is by no
means to suggest that the process of working through the many
equations presented in this chapter, or the many more required to
achieve actual solutions for interesting human belief systems is
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easy, but it is to say that, without such a system of thought,
such has proven to be impossible. With some thought it 1is
possible to show, for example, that to define the equations for
any system of beliefs or attitudes whatever it is only necessary
for the theorist to specify the equilibrium state of the system
so that a potential function may be defined. Once the potential
energy function has been defined, the remainder of the equations
may be written down at once.

While it is true that the Lagrangian form does not impose
itself on the system under scrutiny, it is also the case that the
Lagrangian formulation allows the theorist to constrain the
system with particular ease. This is due entirely to the fact
that the Lagrangian equations may be expressed in terms of any
generalized coordinates whatever, rather than exclusively
rectilinear Cartesian coordinates. To give an example of such
constraints for an interesting communication situation, assume
two cultural belief systems, A and B, which might represent the
pattern of beliefs of two countries, groups, persons, Or any
social unit at all, about n concepts. Assume further that these
groups are placed in commun:cation with each other. If on
theoretical grounds (or prior measurement experience) we may
stipulate that, within each group, beliefs and opinions will not
change relative to other beliefs and opinions will not change
relative to other beliefs and opinions, but solely with regard to
those in the other group, then we have specified each system as a
rigid body, i.e., a body in which distances among any pair of
points (beliefs or attitudes) remains invariant over time. Under
these constraints, each structure A and B may move closer to or
turther from the other, and/or either A or B may rotate relative
to the other. Assuming the internal structure of each culture
has been measured with a Galileo-type procedure (Woelfel & Fink,
1980), the cultural systems may be represented by (ng + np)
concepts in an r dimensional space, where r is the number of
dimensions in the larger space. Ordinarily, r(ng + np) equations
would result from the Lagrangian formulation (or would be
required in the Newtonian mode) but the constraints established
by requiring each structure A and B to be rigid bodies reduces
the number of parameters that need to be estimated substantially.
Specifically, only the position of the center of one of the
structures relative to the other is needed to specify the
distance of A from B overall, while r angles are needed to
specify the orientation of each body relative to the other, since
we need only specify the orientation of the axes of the first
body to the axes of the second. (These angles are usually
referred to as the Euler angles, after their discoverer L.
Euler). It requires r variables (which may be interpreted as the
r rectilinear coordinates of the center of one of the cultural
rigid bodies, Xq1,Xp,...,Xy) to describe the location of the
center of one of the structures in the space, and r additional
variables which may be interpreted as the r position or Euler
angles o9, O,..., Oy to specify the state of orientation
between the two bodies, so only 2r parameters are required.

Since these themselves may depend on the time, we may write both
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the kinetic energies and the potential energies of the system as
functions of 2r generalized coordinates

T = T (Q1IQZI---ré2r) (60)

and

\ = \Y% (qlquI---quD) . (61)

In general, the Lagrangian form will yield nr-k equations where n
is the number of concepts, r is the number of dimensions within
which the process takes place, and k is the numbr of constraints
which may be established on the system a priori. While it is too
early in the development of communication as a mechanical science
to establish many solid constraints over the behaviors of beliefs
and attitudes under general conditions, the constraints just
discussed may be seen as a useful first approximation to the
likely conditions which may prevail during the first stages of
initial encounters between recently introduced cultures, since
they will describe the rotations by means of which purely
artifactual differences of opinion due solely to differences in
orientation or viewpoint are transformed away. This problem has
been studied from a more technical point of view by Woelfel,
Holmes and Kincaid (1979), where the potential energy function
has been described as a least-squares minimum problem.

Conclusion

This paper has by no means established a complete mechanical
science of communication, and indeed the implication that such
would be possible in a single short monograph runs contrary to
the spirit of this work. Rather we have tried to recognize the
great empirical complexity of human communication systems, and on
this basis have argued that the complexity is so great that the
task of understanding such systems by means of a pre-mechanical
categorical model is hopeless. What we have tried to establish
is not that a mechanical representation of human communication
systems can be complete, since the essence of scientific method
consists in ignoring those aspects of any empirical situation
which can be ignored without important loss. Any mechanical
representation of any empirical system will always be to some
extent an idealization. On the other hand, it does not follow
that, because a mechanical representation is incomplete it should
be rejected, since prior to such a decision we must consider the
available alternative models. As I have tried to show, the
available alternative model, the categorical verbal model, is
dramatically less complete. To a large extent communication
scholars have been prevented from realizing the advantages of a
mechanical treatment because they have been misled as to what a
mechanical model implies. T have tried to show that a mechanical
model does not imply machines, or clockwork or wires and springs,
put rather implies simply a wholly abstract logical form of
argument. If it aids the imagination of any scholar to conceive
of interacting beliefs as a set of points connected to each other
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by elastic strings moving through a volume of fluid, then he or
she ought by all means make use of such an analogy, and the
Lagrangian equations will model the system effectively. But the
strings and fluids are only a picture in the mind of the
investigator, and the equations have no need of them -- they
simply describe observed changes in a wholly abstract way.

The essence of the mechanical model, rather, is the notion of
proportionality. Mechanical theory makes statements about ratios
of abstract quantities which have important counterparts in
experience only insofar as measurements of observations of
experience have been made with a proportional measurement system.
Attempts to cast categorical experiences into the logic of
mechanical systems are bound to fail by formal logical reasons
alone. Overwhelmingly, relatively casual efforts to fit
categorical data (such as Likert-type or semantic differential-
type or even ordinal type measures) into a mechanical format, and
of other logically indefensible practices such as substituting
partial linear regression coefficients for partial differential
regression coefficients int~ arbitrary functional relations have
made it impossible to develop meaningful definitions of force,
mass, velocity, acceleration, work, momentum, potential and
kinetic energy within the human communication disciplines. As a
consequence, these terms are used imprecisely and analogously if
at all. One may not simply use the words referring to concepts
from mechanics and assume therefore that one makes use of the
concepts themselves.

Of course, it may well turn out that mechanical models of
~ommunication fail to produce the clarity and power that is
implied in this essay. No scientist would ever foreclose any
possibility on the basis of reasoning alone. It should be clear
from this essay, however, that there is no present basis in
evidence for saying that mechanical models do not fit human
communication processes *o useful tolerances. Such evidence, one
way or the other, can only be provided by trying. Hopefully,
insofar as it describes in some detail how a truly mechanical
model of communication might be developed, this essay might
provide some impetus toward a rational answer to the question.

NOTES

1. I am grateful to D.L. Kincaid and the Communication
Institute of the East-West Center, Honolulu, Hawaii for support
in the preparation of this manuscript.

2. Most contempory communication researchers balk at the idea
that ratio level measurement can be used as effectively for human
data as other, cruder measures, such as Likert-type or semantic
differential type scales, or even simple ordinal measures. We
have discussed these matters in detail elsewhere (Woelfel & Fink,
1980) as have others (Hamblin, 1976; Shinn, 1976; Stevens, 1951)
and will not say more here, except to suggest that among those
who are familiar with the empirical evidence about ratio
measurement or "magnitude estimation”" as it is often called,
there remains little but enthusiasm.
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3. It is worth noting that time is measured as ratios to a
standard interval of time (usually the second), and time, of
course, is at least as abstract as affection, yet time is the
most precisely measured variable in science.

4. This notation was first published by Leibnitz in 1677, and
the same procedure was independently developed about the same
time by Newton precisely to deal with experiences of a processual
nature, because they both believed that ordinary language was
inadequate for the descriptioon of processes. To this day, the
calculus remains the most powerful language known for describing
processes. Although many communication scholars lay heavy
emphasis on the processual nature of communication phennomena,
and criticize contemporary communication theory and method for
dealing with processes clumsily, the calcular is virtualaly non-
existant in Communication journals and books, and very few human
communication theorists have any knowledge of it at all. Thus,
while we may agree that contemporary human communication theory
deals with processes in a clumsy fashion, we cannot agree that
it is because communication theory is mechanical, since a
mechanics without ratio level measurement and the calcular could
not rise much beyond the Greeks on logical grounds alone.

5. We adopt here the summation convention,so that repeated
indices are to be summed over, and the summation sign may be
omitted.
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