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SPATIAL MODELLING OF SOCIAL NETWORKS:
WITH APPLICATIONS TO THE DIFFUSION PROCESS

A social network may be precisely described by a N x N matris X where N
egquals the number of nodes or interacting units in the network.l The value in
each cell is some measurea attribute of the relationship or link among the nodes.
ﬁhile there exists a variety of techniques for analyzing this matrix, sociometry
{(Morenc, 1934), matrix manipulations (Forsyth & Katz, 1946; Festinger, 1949), network
analysis (Richards, 1974; Pitts, 1979) and non-metric multidimensional scaling
(Goldstein, et al., 1966; Lankford, 1874), none of these methods precisely meet the
reguirements of the real number system and therefore are incapa£le of precisely
describing changes in the network over time.? Longitudinal metric multidimensional
scaling (Woelfel & Fink, forthcoming) however, may be used t¢ analvze over-time
changes in social networks (Gillham & Woelfel, 1877).

One practical application of the analysis of social networks is in the study
of the diffusion of innovations (Rogers, 1975; Danowski, 1976). Implicit in the
study of this'tqpic is the change in a social system over time as a new product,
practice or idea spreads through tpe network. Indeed, the prediction of the future
adoption of an innovation may be enhanced by the accurate description of the social
network of the adopting system at earlier peoints in time. ‘Among the variables which
have been shown to predict diffusion are the boundary point or port where the
innovation enters the network (Ratz & XKahn, 1978}, the interconnectedness of the
system (Danowski, 1976), the degree of integration (Roberts & O'Reilly, 1978) and
the strength of individual links.

Controlling for all mediating networks {such as telephones and the
broadcast media) information and innovations will spread spatially in

the same manner that a wave on a pond will grow from & point where



a stone breaks the water's surface or the way in which anergj is axghanged
among particles in a thermodynamic system when the temperature (energy level)
of a particular particle is altered (Dodd, 1855), In contemporary soclety, however,
mediating networks are prasenﬁ and they have been shown to predict information
dissemination and the rates of adoption of innovatioﬁs (Rogers, 1971).
Indeed as Korzenny (1977) points out, the electronic media alter the " communi~
cation distance" among networks by making people "electromically propinquitious."

While both orientations to the study of diffusion are well known, they
have rarely been combined into a single theroretical model. Higerstrand
(1967) represents a notable exception. Additionally, while the mathematical
transformations smong the models are known (Barnmett, 1975, 1978), they
have not been empirically verified. This paper proposes such a test.

The diffusion process may be described by the formula

ds/dt = c/sk_l . 1.0
where ¢ = a §caling constant,
5 = d..istance and

k = some arbitrary power.
Furthermore, k may be specified such that it equals the dimensionality
of the space in which the object or information is diffused., This has been
the case with the diffusion of gas in 2 vacuum, where k equals three., The
formula for the spread of gas is

asfdt = o/s¥t = o/s? . “1.1

Here c equals the mass of the gas and temperature and pressure are
assumed to be constant,

If k is allowed to become variable, some interesting relations are
revealed. Where k equals one, the unidimensional case of point to point

information diffusion, the distance among the nodes becomes irrelevant.



R I T 1.2

ds/dt = c/s1
This is the case when information is transferred within a network or through
the mass media. The velocity of the spread of a message is no longer - a
function of physical distance among the interactants but instead is determined
by other variables. These may include the number of nodes which must
process the message or the capacity of the channel over which the message
is sent.
Where k ecuals 2, the formula for the diffusion of a message becomes
as/dt = ¢/s° "t = c/s . 1.3
This is the case for the spread of information on the surface of the earth,
which is essentially a curved plane.
. ﬁhere k eguals three, the formula is
ds/at = e/s° T = o/ . 1.4
This ir diffusion in a cube and it is applicable to physical phenomenon, as
the spreagd of é.gas in a vacuum. More generally, the constant ¢ may be replaced
by a variable or series of variables which take into account the capacity of
the channel over which the message is sent and the routing of that information.
Thus, a transform to make these models eguivalent is needed. The function
necessary to perform the operation between the two models will be power transforms,
where the exponent of the distance relations among the nodes of the network
a¥e zltered according to a function that will allow for precise prediction of
diffusion.
The probabilities of an object being adopted or a message being received
at a given point is also a function of the dimensionality of the space and
the distance from the initial node. In a three dimensional space it is
p = c/s2 . 2.1

The probability decreases to zero as an iverse sguare, becoming assomtotic



with zero as S+es ., This is shown in figure Z2.1.
In a two dimensional space,
Pp=c/s . 2.2
The probability decreases to zero linearly as s becomes large. This is
shown in figure 2.2,
In the unidimensional case,
p= c/so = ¢c/l=c . 2.3
Distance per se, is irrelevant and the probability is constant with respect
to distance. This is shown in figure 2.3. However, other féctors such as
the structure of the network determine the probability of receiving the
information. That i;, the presence or non-presence of a link and the
routing parameters will determine the probability and rate of diffusion.
This paper began with a sociomatrix of distances,S. Information
should diffuse among the individual nodes in S according to the equations
presented ébove, i.e., the probability of receiving a message is inversely
related to distance in a space pf two Oor moTe diménsions. Thus, S should
be raised to the inverse of the k-1 power, where k equals the underlying
rank or dimensionality of §. This dimensionality, k, may be viewed some-
what differently in the matrix case, Rather than simply physical space,
the dimensionazlity in this case represents the true rank of the matrix in
which the nodes are arrayed. Thus, in the general case,
p = s | g1 (M) . 3.0
where,

k = dimensionality or rank of the matrix in which the network nodes
are arrayed,

C = a matrix of scaling constants
S = the distance matrix

L=k -1



In a special two dimensional case as communication among a group

or cities or countries,
p=cst . 3.1
And in the case of point-to-point (model to model) communication,
p=cs®=c . 3.2

It should be readily apparent that the probability of receiving a message
is again determined by the structure of the network rather than by physical
distance in the umidimensional case.

This analysis has made the assumption that networks exi;t only in
2 unidimensional configuration. This is probably not the case. Due
to switching in the network, distances do appear to exist., Generally,
these distances resemble to a small degree the actual physical distances
among the nodes (Schwartz, 1977). Thus, the dimensionality will be
determined through the empirical analysis suggested later in the paper,
This suggeéts that the equations derived above may represent the idealized
case only énd that 1 is somewhat greater than zero.

In order to test the above models, three sets of data are necessary.
1. 4 spatial model, such as the matrix of intercity distances D presented
below {See Table Dme). 2. A matrix of the frequency of the use of ome or
more mediated network(s) among these nodes, S. This may be a ﬁatrix of the
frequency of long distance telephone calls per uni£ time among the cities
in the matrix or such things as the fregquencies of air traffic, mails or
telegraphs. 3. The final set would be over-time data on the adoption of
some innovation by each node.? Ideally, the information about this innovation
should have been transferred among the nodes splely through the mediated
networks. This could be the sales data for any product which is not

advertised in the broadcast media or the national print mediz, such as



illicit drugs.

Other factors may determine the actual relationship between these
matrices (D and 8). These may include the cost of communicating in the
network (telephone rates among the cities), the frequency of direct
interpersonal contact, and the cost to adopt the innovation.

It is worth noting that the proposed study uses aggregate level data
(Rogers, 1978). The wmit of snalysis is not the individual but the entire
social system which makes up each node. In this case, that would be the
total population of each city. This allows for more accuraté prediction
of the adoption rates among the pode's of the network because random
individual variance and the effects of other communication channels are
randomized. Additionally, it makes possible the analysis suggested here.

In order to demonstrate the utility of these models to diffusionm,
the network matrix § must be compared to the physical distance matrix D.

That is, tﬁe physical distance factor must be controlled out of the network.

This may be aone in two ways. One, the matrices of distances (S) between the

nodes for the physical space and the network are transformed to spatial

coordinate matrices (S* & D*). This has been done in table two for the cities in
table one (See Table Two). Next, these matrices (5* & D*) are rotated toc a leést—
square congruence. Then, the differences between 5* and D* are determined

by simple subtraction. These procedures are generally known as metric
pultidimensional scaling (Woelfel and Fink, forthcoming). A computer program,
GALILED<::) IV (Woelfel, et al., 1876) performs the necessary operations

for this analysié. They are summarized by equatiom 4.1.

* *
D -5 =a . 4.1



where,

D* = gpatial coordinates of D

S* = gpatial coordinates of §

a = the difference between D* and S*.
a is a vector which indicates the difference in location for each node be-
tween D and S. Therefore, it is an indication of the degree of independence
between D and S, such that the greater the a, the more independent the two
matrices. '

Alternatively, the power transform between § and D can be determined,
in this case 2,

p* = 5 6.2

The procedures for performing these transformations are discussed by Dinkelacker
(personal correspondence). From the earlier discussion it was suggested that
the measured & should be between zeroc and one (0<2<l). This suggests that
some degree of physical distance will be taken into account in the network
matrix or what Schwartz (1977) calls the topological characteristics of the
network. In this case, the measured £ will describe the degree of structure
which is taken into account by physical distance, Thus, as & - 0, the network
will be independent of distance and as & -+ 1, the actual physical distance
will have a greater influence on the network structure. Over a series of
different networks, it would be expected that there wouid bz a high inverse
correspondence between a (4.1) and & (4.2).

These models were developed to accurately describe the diffusion precess.
With over-time data on the relative frequency of adoption for each node it
can be determined where the innovation enters and how it spreads through the
s;cial system. Without network information the best estimate of diffusion

would be that the node closest to the entry port would have the highest rate



of adoption and therefore the next highest relative freguency for that measured
point in time. By examining the overall lag in relative frequencies for the
entire system we can describe the diffusion process and determine how well the
distance matrix D descxiﬁes this process.

The adoption frequency curve for each node should resemble the classic
§-shaped curve the form of which has been precisely described by Barnett (1975,
1978). It is the lag in time of this curve that is of interest. The probability
of adoption should resemble a reverse U curve; initially low, increasing to a
peak, and then, growing small. The lag in this will correspond-closely to the
lag in the actual adoption curve. It may be substituted for the freguency
curve in nodes with small pepulations.

Since the nodes in S are networked, they should provide better predictions
of diffusion than D. Nodes which are closer to the entry port in 5 than in D
should experience an increase in the frequency of adoption at an earlier lag
than would be'p;edicted by D. 2additionally, the degree of change in lag time
would be accu;ately pregucted by a. By examining the direction of change from
the entry port and the node's wvalue of a, the lag in the adoption curve for each

node can be determined.

A Partial Empirical Example:

In order to perform an example of the analysis suggested above, the author
obtained the frequencies of airline traffic (mumber of passengers for the
twelve months ending June 30, 1978) among the sixteen cities in table one
(Matrix D). They are presented in table three and represent matrix S as

specified on page 5.

Table three about here




These data were then multiplied by a scaling constant l/sij X 2.307 X 107
so that they would be inversely scaled and adjusted to a standard or common
metric with the physical distances in D which were measured in kilometers. The
value 2.307 X 107was obtained as the ratio of the means of the non-zero cells
in D and S. By multiplying each cell in § by this value the two means becane
equivalent. The multiplication of the values in S by a scaling constant in no
way distorts the data and in fact simplifies the analysis by removing the effects

of the differential scaling metrics from the data. This matrix, S' is presented

in table four.

Takle four about here

S' was the next transformed to a set of spatial coordinates, S*, which is
presented in table 5. An examination of the characteristic roots of S' (the
eigenvalues presented with S*) reveals an interesting finding. 40.2% of the
+total variance in S' is accounted for by negative (imaginary) roots, indicating
that the spatial representation is-highly non~Buclidean. & warp factor of 3.04
was also obtained, further verifving this point. Warp eguals the ratio of the
sum of the positive roots to the trace (sum of all roots) and thus provides a
convenient measure of the degree to which the space is non-Euclidean. A indepth
discussion of warp is provided later in the paper and by woelfel, et al. (1978).

This finding is gquite significant and will be discussed shortly.

Table five about here
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A graphic representation of the first two real (positive) dimensions is
presented in figure one. Although there is considerable variance on the
imaginary (negative) dimensions of the spatial configquration, these two dimen~
sions account for 49.3% of the total variance. A visual examination of
figure one readily suggests that the frequency of airline travel may be des-
cribed as a star-type network with tendencies toward a tree-type configuration,
although among the nodes at the center (hub) a ﬁesh-type network may be the
best descriptive label (Schwartz, 1977; Katz & Kahn, 1977).. In order to
travel by airplane from New Orleans to Phoenix or Seattle, the nodes at the
periphery or the points of the star, one must go through one of the central
switching nodes such as Chicago. 2lso, the plot suggests that Atlanta serves
as a tree node or an intermediate switching facility, taking passangers from
New Orleans and Miami and rerouting their travel prior to their reaching the
more central nodes. 2mong the central nodes (Chicago, Cleveland, Dallas,
Denver, New York, lLos 2ngeles, San Francisco and Washington), there appears

to be a mesh~type network with each node having éirect link to each other.
[Figure One About Here]

Matrices S* and D* were next compared by translating D* to a common origin
with §* and then rotating them to a least-squares congruence. The differences
between the two spatial configurations are preseﬁﬁed in table six. It ié
equivalent to vector a in equation 4.1. Table six shows the degree of departure
from the physical distances that exist in the network of airline traffic
among the sixteen cities. The negative sign indicates that there is greater
difference between S* and D* on the negative, imaginary dimensions rather

than on the positive, real ones. This is because there is considerably more
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variance on the imaginary dimensions in the network data {(40.2%) than in
the physical data (14.0%).4 Differences on these dimensions must also be
minimized, accounting for the discrepancies between the matrices and the
negative signs in table six.

The root mean sguare (RMS) dlfference between the two spaces was 1846.00
units. This value is 81.5% of the mean value in D and 8', indicating a
considerable degree of difference and suggesting that only a small proportion
of the airline network can be attributable to physical distance. When the
direction of change is examined with the plot and the matrices 5' and D along
with the magnitudes of difference in table six, it becomes clear that the
changes are departures from the spatial configuration and toward the network
configuration. Thus, in a case where information or innovations would spread
primarily by the airlines, physical location would provide little predictive
power in determining a node's probability of learning a bit of information

or its rate of adoption.
[Table Six About Herel

The transformation proposed earlier was not a2ttempted because it does
not aprear to be correct. The power transformation (equation 4.2) does not
have an imaginary term necessary to add the loadings on the negative dimensions.
The meodel further suggested that the same transformation could be applied to
each element in D. This does not appear to be the case. An examination of
table six indicates the differences among nodes seem to be independent. For
example, San Francisco changed -628.14 units while Los Angeles changed 1803.63
units and both moved toward the hub of the metwork. This transformation

grew out of the assumption implied by eguation 1.2 that the network was
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completely and equally interconnected or a fully mesh-type network. This is
not the case with zirline traffic. The model, however, may provide a more
adequate solution in a fully mesh-type network as among the cities at the
hub of this one.

The model further assumes that the nodes are of egual mass, i.e.,
each node has an equal potential or capacity for linking and using the net-
work. This is not the case. The cities at the hub of the network seem to
be those with greater population. Population may be an exdéllent indicator
of a node's mass. 1In this case, it does seem to predict the potential for
use of the airline traffic network by a& node. Thus, it may be suggested
that a weighting factor, population, should be incorporated into this model.

Thnis discussion need not imply the total inadequacy of the proposed
model. The absolute magnitude of the transform appears to be correct. L
(equation.4.2) would be cuite swmall, approachig zero. This appears to be
the case Qecause the RMS difference between S* and D* is large relative to
+he mean value of &' ané D, indicating that considerable foreshortening of
the vector lengths in D is necessary to make it ecquivalent to §. In summary,
the suggested transformation was not attempted because a large proporticn of
the variance in the sociomatrix was attributable to imaginary roots. This
indicates that a complex function would be more appropriate. It was also
not attempted because of some erronecus assumptions which make the model use-
ful only in the case of a mesh-type network.

Network data by definition is non-Euclidean, i.e., at least one of the
qharacteristic roots of S' must be imaginary. The reason for this is that
any three nodes which vary in centrality must viclate the rule of triangular

inequalities. The exception is the compietely and egually interconnected



_13_

network. Any three points (nodes) can be said to form a Euclidean triangle
if and only if the sum of any two of the distances among them {the 1link)
does not exceed the third. For any set of k points (5%), those points
represent a Euclidean configuration of and only if the triangular inequalities
rule is not viclated for any three of the points. When the triangle inequal-
ities rule is violated for any triple of points, the result is a Riemann mani-
fold, and which is represented by a coordinate system in which some of the
dimensions are imaginary. The locations of the non-Euclidegn relations among
the points may be determined by formula 5.1.

ﬁgk = & + & - 28 . 4. cos® 5.1

. ij ik ij ik

In cases, where, cos ® £/1.0/, the relations may be considered Euclidean.
In cases where, cos © »>/1.0/, the relations among the three concepts may be
considered non-Euclidean. It is from this later case that the complex eigen-
roots result (Woelfel, et al. ,1978).

FYor a network, take the three nodes a, b, and ¢. ¢ is a central switch-
ing facility or a liaison in a social org.mization. 2 and b both send
information to ¢, where it is processed and then sent along to the other node,
b or a. In terms of communication distance, both 2 and b are close to c,
but very far apart from each other. In other words, the abc triangle has two
short legs (ac,bc) and one very long one {ab), such thaf the sum of the angles
exceeds 180° and the cos © exceeds 1.0. Thus, this triad cannot exist in a
two~dimensional space without a complex dimension to foreshorten the ab leg.5

This conclusion is of some significance because in his discussion of the
use of multidimensional scaling (MDS) for sociometric research, Lankford (1874)

concluded that MDS was totally inadeguate for cligque identification. 1In the
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reported analysis he used a metric form similar to the meth;d employed here.,
However, he did not indicate that he took into account the imaginary dimen-
sions (those with negative toots). Additionally, did he not present an
eigenvector nor specify nodes' loadings on the obtained coordinate system.
In the example reported here, over 40% of the variance occurred on those
dimensions Qhose roots were negative. Any analysis which did not take this
variance into account would clearly be inadeguate and lead to erroneous
conclusions. Thus, any future sociometric research using MDS should use

a computer program capable of dealing with complex eigenroots such as

GALILEQ@E;V(Woelfel, et al., 1976).

As empirically demonstrated, no one model may adequately describe all
network data and provide transformation to the physical configuration. The
data presented here while providing a number of interesting insights about
network analysis may not be gem@mlizable to other networks. The proposed
transformafional model was inadequate for this data set because it dié not
have a comi:léx term or weighting factor for the node's mass. Future research
will attempt to take these factors into account. It should be noted that
the model originally proposed may prove more adeguate in cases of fully
mesh-type networks—-say long distance telephone calls among the sixteen
cities in this example. This research is alsc.planned.

In summary, this paper proposed a mathematicéi model to describe +the
relationship between social networks and spatial models. ZAirline traffic
data was used to demonstrate an application of this model. The model proved
inadeguate because it did not take into account the complex nature of the

sociomatrix and the topological characteristics of the network itself. The
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analysis demonstrated that both theoretically and empirically, network
data is non-Euclidean. This finding has important implications for all
sociometric research. Future research is planned to take into account

the necessary modification in the transformational model.



FOOTNOTES

This assumes that the relationship among the nodes is relatively stable
over time. In the case where the relations among the nodes are dynamic
this process of change can be precisely described by gathering matrix S

at a number of points in time and calculating the chanpes between

Generally, the problems with these procedures are often the manmers in
which the data is entered into the analysis as well as the mathematical
properties of the procedures themselves, For example, the matrix mani-

pulation of Festinger meets the property of the real number system but

‘only informstion on whether or not a link is present entered into the

analysis. Thus, there is insufficient variance to make full uée of the
technigue.

The selection of the time frame for the frequencies of the use of the
network and the adoption of some innovation may prove to be a problem.
These measures should take place guite frequently, i.e., they should be
aggregated over a short interval of time. This interval should be less
than or equal tc 1/2 of the shortest cycle in order to completely index
the minimum cycle through discrete measurement;‘in time (Arundale, 1977).
Arundale's advise, however, is of little utility for the study of a given
innovation. The reason is that the fregquency of the cycle is unknown
befors the process begins. However, for certain variables such as travel
amongst certain nodes, seasonal periodicities are known and may prove to
be a useful guide in the selection of the invertzl of time over which the

data can be aggregated.



The negative eigenroots in the physical data may be attributable to
measurement error such as measuring the distance from city limit to

city limit rather than point-to=-point (airport to airport or city hall to
city hall). |

One must assume either that there is some communication between a and b
or that a maximum value exists for the attribute (discrepancy}! of the ab

link. Without such a value, ab = = and calculations cannot be performed.

~In the airline traffic network, this walue wouléd have been 2.307 X 107.



TABLE ONE: Airline Distances Mmong 16 Selected U.5. Cities (one unit

= one kilometer)

o
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CITY < [+ (§) L a 8 8 S g = = ~ o v W =
1. Atlanta 0
2. Boston 1508 0
3. Chicago 944 1369 0
4. Cleveland 891 886 496 0
5. Dallas 1160 2496 1292 1649 0
6. Denver 1950 2846 1480 1974 1067 0]
7. Detroit 869 986 383 145 1607 1860 0
8. Los Angeles 2310 4177 2807 3297 2005 1337 3191 0
9. Miami 972 2019 1911 1749 1788 2777 1354 3764 o
10. HNew Orleans 682 2186 1340 1487 713 1741 1511 2692 1076 )
11. New York 1204 302 1147 652 2211 2624 1258 3944 1757 1884 )
12. Phoenix 2562 3701 2338 2814 1427 943 2719 574 3189 2117 3451 0
: 13, Pittsburgh 838 777 660 185 1721 2124 330 3437 1625 1478 510 2941 0
}4; San Francisco 3442 4343 29%0 3485 2386 1524 313164 558 4174 3099 4137 1051 3643 )]
'1%5. Seattle 3511 3979 2795 3260 2705 1643 3118 1543 4399 3381 3874 1792 3440 1091 v}
16. Washington 874 632 961 492 1907 2404 637 3701 1485 1554 330 3191 309 3929 3849 0



TABLE TWO: Spatlal Coordinaces for 16 Selected U.5. Clitles

1 2 3 : 4
1. Atlanta -645.26 -672.22 800.83 ~100.36
2. Boston ~1723.14 635.29 177.62 -243.67
3. chicago -189.42 349.90 : 6.46 ’ -97.94
4. Cleveland -890.51 355.89 49.71 ~170.01
5. Dallas 265.95 -594.45 -295.84 182.05
6. Denver 1058.32 219.01 -241.49 75.06
7. Detrolt -774.21 254.17 -83.72 -69.71
8. Los Angeles 2314.28 -409.31 644.48 13.06
9., Miami -1360.94 -1273.00 -333.95 ~224.15

10. New Orleans -351.95 -913.83 -294.36 48.94

11. New York ~1534.93 . 361.91 144.51 ~235,85

12. Phoenix 1799.56 -400.04 ~374.29 271.10

13. Plttaburgh -1055.21 260.44 41.55 ~188.93

14. San Francisco 2627.64 290.86 ~289.99 368.51

15. Seattle 2010.26 ‘ 1476.12 7.66 727.66

16. ‘Washington ~1370.69 " 59.24 40.62 ~361.75

EIGENVALUES (ROOTS)OF EIGENVECTOR MATRIX-- :
32997093.42 6819619.60 1690325.50 1166683.48
PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS—
83.69 17.29 4.2a 2.96
PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS IN THEIR OWH SPACES~
72.37 14.95 3.70 2.56

SUM OF ROOTS 39425214.64

v

5
-100.56

98,63
29.77
43.58
-3.82
-49.94
15.93
-405,64
-2710.11
-104.99
66,13
-183.34
28.80
-68.52
855.51
48.57
1051710.81
2.66

2.30
WARP FACTOR

6
-85,76

-163.42
-66.98
~117.32
131.22
47.78
-48,35
~43.56
-197.49
21.69
~162,01
176.53
~132.%4
257.68
638,3]
-255,40
729715.24
1.85

1.60
1.15

7
23.37

75.98
1.91
13.75
~218.84
511.23
414.95
-210.73
169.33
-241.34
-224.32
-154.81
2.83
-63.66
-115.91
16.26
711340.63

1,80

8
-100.35

-25.45
~-7.54
~-33.92
-40.148
347.09
-79.14
-85.20
-331.06
-125.81
-199.23
32.21
-53,26
156.33
383.12
-135.59
397642.79
1.00

0.87



TABLE THO CONTINUED

9 10 1 12 13
1. atlanta -23.96 ~23.22 105.69 111.88 132.60
2. Boston - 1.861 ~2.17 4.58 57;10 47.97
3. Chicago 0.29 -0.00 -2.47 22,16 14,45
4. Clevelan -5.43 -5.62 22.43 _ 55,35 47.59
5. Dalles -18.40 -16.59 86.16 ~13.04 -24,117
6. Denver 102.82 96.80 ~464.85 ~256.03 -232.58
7. Detroit -20.27 ~19.46 90.20 79.22 145.79
8. Los Angeles -16.77 -16.78 71.93 118,48 134.25
9. Miami 4.36 2.49 -26.25 117.45 151.53
10. New Orleans -37.06 ~34.92 167.44 94.18 92,40
11. Xew York -53.37 ~50,87 238.69 184.07 163.84
12. Phoenix 4.26 4.59 -16.85 ~58.45 ~52.36
13. Fittsburgh -10.21 -10.24 41.63 75.83 69.53
i4. San Francleco 35,55 34.68 ~155.79 ~166.01 -130.01
15. Seattle 69.12 70.16 -292.11 -574.16 -667.84
16. Washington -29.31 -26.61 127.55 171,32 167.01

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX --

23477.58 21178.55 -462286.09 -564772.04 -692257.71
) PERCENTAGE OF VARIANCE ACCOUNTED FOR-BY INDIVIDUAL FACTORS-
0.06 0.05 1.17 1.43 1.75
PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS IN THEIR OWN SPACES-
0.05 0.35 7.49 9.16 11.23

14
116.21

40.64

23.29

46.13

-79.58

1.26

20.28

2719.89

291.62

s51.684

60,00

3.92

65,10

-118.28

-931.65

129.28

-1097198.59

.78

17.79

15
128,01

~22.96
0.38
8.55
~50.86
26.12
5.39
391.06
330,24
87.55
6.33
95.42
28.62
;43.30
-1051.27
61.19

-1410746.47

3.57

22.88

16
931.79

-97.41

~-29.23

-47.16

21.55

89.33

-104.71

-980.07

9.89

~-0.72

~105.25

14.34

-52.11

52.14

284.91

12.73

-1958909.27

4.96

1.7



TABLE THREE1

Aixline Traftfic Among 16 Selected U.S. Cities:

Number of Passages for 12 Months Ending June 30, 1978

g
o IE g e s g E
A o
s s 8 03 03 ¢ § & 04 8 & A g 3 5
T4 & F 5 & & 3 3 3 3 & i 3 i i
CITY < m (3] U =] z 4 M ' [ " x
1. Atlants 0
2, Boston 16926 0
3, cChicago 32507 41170 o
4. Cleveland 10050 13505 37203 4]
5. Dallas 20462 10556 36885 7705 4]
6. Denver 8258 10378 41643 5603 24691 Q
7. petrolt 15815 18855 59546 20818 11571 2090 1]
8. Los Angeles .i9562 33840 105346 18258 39720. 43135 29826 0
9. Miami 31497 25575 41020 12752 11903 10082 20515 26797 0
10, New Orleans 157714 6050 19411 3501 23170 7536 5866 14326 15180 0
11. New York 76949 184968 183012 56010 49338 39547 74322 164384 180912 31974 0
12. FPhoenix 3342 6120 11480 5878 10292 18933 9712 38689 3020 1958 23120 1]
13. Ppictsburgh 10318 15270 29874 4284 6178 5656 12861 1399} 14644 104 64958 4099 0
14. San Francisco 11040 26551 473088 8841 17523 25145 16251 110692 14092 8301 3111092 17653 7601 o
15; Seattle 4715 5269 id?ll 2219 6021 13060 3562 49581 4189 2627 16164 7030 1753 319601 o0
16. Washington 31945 63766 54025 15283 19618 17185 24062 41488 29852 10412 187202 7775 15802 32113 9259 0



htlanta
Boston
Chicago
Clevelend
Dallas
Denver
Detrolt
Los Angeles
Hiami
;. ¥ew Orleans
.. Haw York
;. Phoenix
s, Pitteburgh
{. S5an Franclsco
1. Seattle

». Washington

i

0.0
1363.44
710.56
2295.46
1128.12
2793.78
1458.02
1178.88
7,132
1462.64
299.9)
6902.54
2235.40
2090, 14
48%3.14

722.09

0.0
558.29
1707.18
2184.73
22231.95
1222.71
221.47
902.04
3813.47
124.586
1763.64
151e.01
B69. 74
4178.68

362.20

0.0
620.58
625.20
553.68
3a7.58
219.16

L808,69
562.91
1186.10
126.88
733,63
712.84
1568.76

426.793

Q.0
2994.48
4117.99
1107.36
1264.24

562.91
1808.69
£500.79

412.95
3924.21
5384.54
2609.22

1508.78

0.0

934.22

1993,15

581.36

1937.88

996,62

468,32

2242.40

3735.03

1317.30

3831.93

1176.57

0.0
2537.70

532.92
2288.54
3061.39

583.67
1218.10
4078_77

918.19
1767.16

1342.867

Q.0

172.84

1123.51

3931.43

19.99

2376.21

7692,54

1418.80

6475.74

95%. 71

] 7
TARLE 41 AIRLINE HETWORK DATA TRANSFORMED RY Iifa X 2,307 X 10

0.0
860,51
1610.29
140.73
392.90
1649.50
207.61
466,01

555.99

1520.

126.
7638,
1575,
1637.
5506,

772,

i

18

68

97

RO

84

0.0

722,09

11781.84

6065,10

2779.93

2782. 14

2214.72

0.0

998.%)

355.28

207.63

1428.03

122.27

0.0
5629.07
1305.76
32B0.55

2966.80

0.0

3033.70

13161.43

1460.3)

0.0

583.67

717.48

0.0

2491.56

0.0



10.

11.

12.

13.

14,

15.

16,

Atlanta
Boston
Chicago
Cleveland
Dallas
Denver
Detreit

Los Angeles
Hiami

New Orleans
New York
Fheonlx
Plttsburgh
Ean Franclsco
Seattle

Washington

1
~1304.26

~277.28
231.80
347.57
105.95
B806.36
~-756.78
375.09
~-1755.92
~3947,55
115.88
4170.55
~4967.13
583.59
6233,51

38.62

TABLE FIVE:
2
-1165.89
352.07
80.37
-176.44
~216.39
-108.36
1156.76
7.44
-1303.36
~4188.93
7;.39
4531,93
3972.37
~4.81
-2951.81

-60.27

EIGENVALUES (RODTS) OF EIGENVECTOR MATRIX--

103271780, 40
PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUA

151.44

67205541.%0

98.55

SPATIAL COORDINATES OF

3
65.30

222.34
395,39
3835.84
-268.50
=-B90.05
452,75
231.36
205.39
-38.86
~2764.38
193.65
-158.91
-1722.78
-39.60

201.06

_26843898.01

L FACTORS-

39.36

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS IN

49.83

SUM OF ROOTS

32.43

68191540.59

12.95

AIRLINE TRAFFIC HETWORK

4
~640.10

L

1081.64

587.34

113.50

1211.20

894.58

-208,13

208.24

-890.81

746.83

-257.07

238,45

4.41

-270.16

=316.43

=-250.21

6169930.69

9,04
THEIR OWN SPACES-

2.97

5
a02.74

=-221.58

112.22

-57,39

466,177

~758.33

399.01

-236.42

-515.133

-55.85

290.09

33.ed

-127.99

-78.38

21.77

~73.16

2100690,27

j.oa

1.01
WARP FACTOR

FOR 16 SELECTED U.S. CITIES

6
-211.48

-309.64

-4088.57

15.77

190.56

14.85

663.13

152.37

371.34

-35.08

22.44

1.51

~149.79

-50,41

~14.81

~178.22

1075711.9)

L.57

0.51
3.03

7
397.78

~26.18
=-272.38
-21.82
122,71
52.14
-245.,57
28,97
36.82
-103.38
136,51
~-15.96
22,23
-258.56
~16,680

203.28

474694.09
0.69

0.22

146,52
132.05
-95.14
=17.70
83.72
~-9.67
-105.70
=-27.27
15.53
-34.41
4.47
=17.15
-14.78
-30.19
~25.67

-4.38

70880.50
0.10

0,03



10.

11.

12.

13.

14.

15,

16.

Atlanta
Braton
Chicago
Cleveland
Dallaa
Denverx
Detrolt
Loa Angeles
Miami

New Orleans
New York
Pheonix

Pittsburgh

San Franclsco

Seattle

Washington

=-34.16

-33.11

22.52

-19.82

1.95

25.42

6.93

-3.93

§.28

-1.78

4.14

3.61

7.88

6.17

1.59

10
~350.37

-4.65

189.69

19.44

-159.50

61.19

148.085

-11.24

4.09

48.38

86.84

21.30

13.13

~-39.23

35.817

-65.680

EIGENVALUES (ROOTS) OF EIGENVECTOR MATRIX--

4101.51

-228534.64

11
109.19

-450,04

-7.76

11.20

-256.32

-156.03

~30.54

343.16

~99.66

66.33

48.08

23.49

67.21

71.82

27.98

211.90

~504818.30

PERCENTAGE OF VARIARCE ACCOUNTED FOR BY INDIVIDUAL FACTORS

0.00

0.133

0.74

TAGLE FIVE CONTIRUED

12 13
~758.80 190.45
405.70 506.69
53.23 -623.38
~5.28 -2.05%
127.74 -280.23
-494.24 506.94
85.65 469.32
55.48 126.15
156.20 -862.93
233.06 261.45
392.42 -187.15
1.35 -43.20
-104.62 -146.79
-84.33 -14.04
-13.00 ~67.26
261.04 146.02
1333731.89 -2253222.98
1.95% 3.30

PERCENTAGE OF VARIANCE ACCOUNTED FOR BY INDIVIDUAL FACTORS IN THEIR OWN SPACES

0.00

0.16

0.36

0.95 1.62

14
92.130

653,57

1169.13

~2024.95

711.92

125.60

952.71

1087.54

422.47

~694.23

-1800.17

-528.33

~245.30

-895,57

96.88

876.34

=-14335751.04

21.02

10,31

15
-1129.16

-272.16
110.07
1163.70
147.86
436,74
719.36
74.28
-1569.42
-2593.73
631.47
-4078.62
2918.27
352.80
26180,5)3

-170.26

-45769645.07
67.12

32.92

16
320.27

659.36
1633.59
2250.90

QBG.EI
1250.85

85.66
1580.00
~43.76
-3268%.60
2270.87
-2284.34
~4054.86
1707.90
~4395.64

1275.38

-74591781.66
109.39

53.65



TABLE SIX

DIFFERENCES BETWEEN PHYSICAL SPACE AND AIRLINE NETWORK

1. Atlanta 757.15
2. Boston _ 196.70
3. Chicago | -1715.96
4. Cleveland 1831.48
5. Dballas -1344.39
6. Denver -1151.51
7. Detroit 401.03
8. Los Angeles 1803.63
9. Miami -222.98
10. New Orleéns 2663.18
11. New York 1 2542.61
12. Phoenix 3473.80
13. Pittsburg 2571.32
14. san Francisco -628.14
15, Seattle 2887.94
16. wWashington ~-229.89

THE ROOT MEAN SQUARE DIFFERENCE BETWEEN ALL NODES IN SPACE 1 AND THEIR COUNTERPARTS IN SPACE 2
1845.00
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FICURE ONE: Two Dimensional Representation of Airline Traffic Network
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FIGURE 2.1

The Probability of Receiving a
Message in a 3-Dimensiconal Space

1.0
P
s
FIGURE 2.2
The Probability of Receiving a
Message in a 2-Dimensional Space
1.0
- B
=
FIGURE 2.3
The Probability of Receiving a
Message in a Unidimensionazl Space
1.0
P

*These ecquations may be rewritten with the distance that a message will difuse
as & function of time for a given dimensionality as presented in pages 2-3.
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