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Intelligence as an Emergent Property of Networks:

Approaches to the study of "intdligence’ have been diverse, ranging from those which
condder intelligence a mysterious quaity which belongs to the soul, fundamentaly free and not
governed by scientific laws and thus not andyzable by scientific means, to rationdigtic rules
based "atificid intelligence” or "expert sysems'. Within this diversty, however, one may identify
two mgjor theoretical modds which underlie a least most Western theories of intelligent action.

The fird of these, and by far the most widdly accepted, is a modd based on Arigtotl€'s
dudigtic concepts of intellect and will. The intellect represents the caculating pat of
intdligence. It isthe part which is aware of its surroundings, identifies and names the objects of
experience, and projects future states of the organism. The will, on the other hand, "attaches’
itself to some of these possible outcomes and "desires’ them. It provides a motive force toward
achieving the end gate. It is the task, then, of the intellect to plan and carry out a course of
action which can result in achieving the desired god date.

The Aristotelian mode is not determinigtic. Aristotle was aware of the fact that no vaid
syllogism which could be congiructed from a combination of "intellectud” and "willful" premisses
could yield an action as aformd logica conclusion. He concluded that human behavior did not
have the "certainty" of physical sysems, and cautioned his followers to seek only the level of
precison and certainty from this class of phenomena which was gppropriate to them. Later
Chrigtian philosophers, particularly Aquinas, devated the uncertainty of the Arisiotelian dudigtic
modd to the principle of Free Will. By far the largest part of contemporary theoridts in this
tradition accept this notion of freedom as an inherent characteristic of human behavior.

This rationd quest for desired end dates or goals is assumed to take place within a
system of congtraints which includes the actions of natura laws and the goa oriented activities of
other intelligences. Thus some of the plans the intelect might derive are impossble and others
prohibited or proscribed by potential conflicts with others. These congtraints, over time, tend to



3 -- Intdligent Groups

be more or less loosaly codified into explicit and implicit rules which specify what kinds of
actions are avallable, permissble and effective for achieving desired gods, and these rules
provide a framework within which an intelligent agent must act.

Rules theories take on many forms. Some theorists focus particularly on humean ectivities
in socid gStuations, and recommend careful, sendtive and holistic observations of the behaviors
of actors in socia Stuations as a basis for uncovering the latent set of rules which governs those
behaviors (Cushman & Pearce, 1977). Chomsky's theory of language behavior can be seen as
a specific example of a non-deterministic rules-based modd:  Within Chomsky's modd,
freedom is central and distinguishes human language from al other species and automata, Snce
the "...normd use of language is not only innovative and potentidly infinite in scope, but aso free
from the control of detectable stimuli, either externd or internd” (Chomsky, 1972, p.12).
Moreover, any speaker's grammar "...mug, then, contain a finite system of rules that generates
infinitely many deep and surface structures, gppropriately related. It must dso contain rules that
relate these abstract Sructures to certain representations of sound and meaning...” (ibid., p. 17).

Perhgps the most rigorous and ambitious use of the rationdigtic rules based models
occurs in computer based expert systems, which consist of databases of facts, examples and
rules relating the facts and examples, and "inference engines' or dgorithms which apply explicitly
formulated rules for achieving specific gods, such as configuring or repairing a complex system,
diagnosing and treating a disease, determining the location of subterranean minerd deposits, or
parsng and understanding naturad language.

Whatever the specific form of such Aristotdian modds, however, most typicaly adopt
Arigotle's judgment about dl rationd, rule following systems rationd systems are not typicaly
assumed to be deterministic, and even computer based expert systems often include substantial
Sochagtic components. Unlike a "naturd law™, any rule may be violated, abeit by risking some
pendty associated with its violation.

More recently, an dternative model of intdligent behavior has developed from two
unrdlated research traditions. The fird of these is the "symbolic interaction” modd.
Interactionigts particularly, following Meed, have emphasized the "symbolic’ nature of human
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intelligence, and suggest thet, through symboalic interaction with other members of a community,
people are able to develop an internal representation of the objects of their experience,
themsdlves, and ther interrdationships. This symbolic representation system conditutes the "sdf
conecept”, which is believed to be the foundation of human intelligent action. (Mead, 1934).

Many, perhaps mog, interactionists are themsdalves Aristotdian rules based theorists
who incorporate the interactionist concepts of symbolic communication, sdf concept and
particularly Stuationa relativism into the basic rationadistic modd. Some, however, advocate a
different gpproach. Within this second model, behaviors are considered to be components of
the salf which, through direct ("sdf reflexive") experience or through communication with others,
have been defined as the appropriate activity for them under specific circumstances. Thus, if one
has learned to define oneself as brave, brave actions will be appropriate under dangerous
circumgtances, but if one has learned one is a coward, cowardly actions will be seen as
gopropriate. In any Stuation one must define the nature of the Stuation, define onesdlf, and
define a set of potentid behaviors which might occur in that Stuation. The behavior actudly
enacted will be the one mogt consstent with the saif asit has been defined in thet Stugtionin this
model, behaviors are chosen because they are appropriate and not because they lead to a
desired end state (Mills, 1940; Foote, 1951; Lemert, 1951; Wodfel and Fink, 1980).

This second mode, rather than assuming behavior to be rationd and god oriented,
assumes that behavior selection is a "pattern matching” agorithm. Specificdly, within this mode
anindividud in asocid Stuation is confronted by a set of "objects’ which vary from stuation to
gtuaion. Among the objects in the Stuation are a st of potential behaviors or actions which,
through previous experience and communications from others, the individua has learned are
possible behaviors within that Stuation. The definition of sdf within that situation is determined
by the individual's perception of higher relationship to the objects in that Stuation; the pattern
of action or "behavior" the individuad will exhibit will be that which best matches the pattern of
relationships to objectswhich defines the sdif in that Situation.?

2 No idea is completely new, and notions of "consistency” or “pattern matching" can be found in
Descartes' notion of "appropriateness to the situation", asChomsky points out (Chomsky, 1972, pp. 12-13).
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Critics of the "pattern matching” modd usudly indict it specificdly for its denid of the
role of freedom of action, which they usudly associate with the ability to interpret and generate
nove patterns. Chomsky, for example, says.

"...(The normd use of language is innovative, in the sense that much of what we
say in the course of normad language is entirely new, not a repetition of anything
that we have heard before and not even smilar in pattern -- in any useful sense
of the terms "gmilar" and "pattern” -- to sentences or discourse that we have
heard in the past. (Chomsky, 1972, pp. 11-12).

Although these two views have coexisted for a very long time, research findings from
neither group have had much impact on the views of the other. Neither model, moreover, has
been able to suggest a physicad mechanism which might produce the phenomena under study. In
fact, the absence of any conceivable mechanism by which novel responses to novel simuli might
be generated lies very close to the heart of the dispute, as Chomsky makes clear:

If by experiment we convince oursdves that another organism gives evidence of
the normd, credtive use of language, we must suppose that it, like us, has a
mind and that what it does lies beyond the bounds of mechanica explanati-

on...(Chomsky, 1972, p. 11).

Recently, however, research in another area has shown some potentid for reveding a
physica mechanism by which a pattern association mode of intelligence might be constructed.
Workers in what has varioudy been caled "neurd network™, "Pardld Data Processing” (PDP)
and sometimes "connectionist” models have produced suggestive findings which indicate at least
some behaviors often consdered "intelligent” may be emergent properties of communication
networks. Certain kinds of networks can be shown to receive and store patterns of information,
"learn” to associate certain patterns of information with other patterns, and solve logica
problems. In fact, Snce padld daa processing networks develop internd symboalic
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representations of their environment through interaction with the environment, they may be
particularly compatible with an interactionist modd of human intelligence.

This paper presents a theory which focuses attention on those characteristics of
networks which relate to their capacity to ingest, store, process and output patterns of
information. Specifically, the paper presents a generd theory of networks which communicate
with their environment, and through that communication develop representations of the
environment, themsdves, and their rlaionship to the environment which serve as a basis for
their subsequent actions.  Since interactionist theory consders the centra object in any
individud's reference system to be the sdlf, we aso discuss various network architectures which
facilitate sIf referencing. These networks are called here intdligent, self-referencing networks.

The gpproach taken in this paper is not meant to imply that work in aternative modds
of intdligence or language behavior is less promising than the approach taken here, but rather
we mean only to explore the extent to which communication networks are capable of forming
intelligent, self referencing systems. Nor do we mean to consider intelligence solely a property of
individua human beings. If inteligence may be a propety of networks and not ther
components, then it is legitimate to examine the extent to which intelligence may be a property of
socid networks rather than solely of the individua people of which they are composed. We
mean to extend our analysis to communication networks in generd, and explore in particular the
possibility that large scale socid networks such as those which exigt in groups, organizations and
cultures may themsdves conditute intelligent, sdf referencing systems. Within this system,

neural networ ks make up asubset of the more generd category of communication networks

Basic Components of I nfor mation Processing Networks

The foundationa concept in the present theory is the concept of communication, which
refersto the changing distribution of energy in space as a function of time. Communication
in its most fundamenta sense, as we define it here, means flow of energy. These flows are in

generd time dependent energy fields. There is no concept of intention or purpose implicit in this
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definition of communication; it is understood smply as a transfer of information or energy by
whatever means.

The region a which two or more flows of energy intersect is defined as a node. Within
this theory, the state of any node is a function of the flows which define it. If the energy fidds
which intersect to define a node are one dimensond (as the flow of eectricity through an ided
one dimensiond wire), then the node resulting from the intersection will be zero dimensond, or
apoint. If the energy flows are dichotomous, that is either on or off, then the node will take on
only discrete vaues. If the energy fields are continuously variable, then the node can take on any
positive red vaue if the fidlds may vary in Sgn, the node may take on any red vaue postive or
negdtive. If the fidds are n-dimensond, then the node will be a diffuse n-dimensiond region
whaose vaue will be afunction of its coordinatesin n-space.

In generd, a st of energy fidlds may intersect to generate multiple nodes of various
configurations, each of which will be a time-dependent energy field. The set of these intersecting
energy fidds a any moment will define a network, and the set of nodes resulting from the
interactions will represent the "pattern which the network represents at that moment.

This paper redricts itsef to the case of one-dimensiona energy fieds and their resulting
"point-nodes’. The smplest node can take on only two vaues dong a single dimension, which
may be described for convenience as "off" and "on." The vaue taken by a node a any point in
time is caled its "activation vaue"" The set of vaues taken by any sat of nodes a a given
moment can be defined as a"pattern”. "Communication” in this restricted model may be defined
asthetransfer of al or part of the activation vaue of any node(s) to any other node(s).

Like any system, a network may be partitioned arbitrarily so that a subset of the origind
network is defined as the "environment” relative to the other remaining part. This partitioning
may be wholly heuristic, and done soldly for the purpose of ignoring the internd properties of
the portion of the network defined as the environment. This concept of arbitrary partitioning is
particularly important in the case of socid networks, where each individua person may be

considered anode in an organization and each organization may itsaf be considered anodein a
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larger socid network. The individud himsdf/hersdf may be partitioned into a s&t of neurd
networks.

Often the level of communication among an arbitrary set of neurons within a single
individua may be smdl or zero while the communication between neurons in one individua and
another (albeit mediated by dectromagnetic forms of transmisson other than typica neurd
mechanisms) may be subgtantid. In this (quite common) case, the communication network does
not resde wholly within asingle individud, but rather may exiss across a st of individuas. This
a leadt givesrise to the possibility that the inteligence of such a network may not resde solely in
each of the individuds, but rather might be considered a property of the interpersond network
taken asawhole.

The network (considered at whatever level of aggregation) may communicate with its
environment through weights or links from the environment to nodes within the network. Nodes
which receive information from links to the environment are defined as "input nodes’, and nodes
which passinformation through links to the environment are called "output nodes." Nodes which
have no direct connection to the environment are typicaly cdled "hidden nodes.” In neurd
networks, the function of a node as input, hidden or output is usudly fixed by biologica or
programming factors, but in socid networks, individua nodes may play each of these roles
under different circumstances.

Input nodes receive information from the environment in the form of sgnas which dter
their level of activation. In the generd case, such signds can take on a wide variety of forms
ranging from "smple, sgned numbers of limited precison” to "...arbitrary symbolic messages to
be passed among...units’ Rumdhat & McCleland, 1987, p. 132), but they al represent
communication as defined above, that is, trandfer of information or energy from one node to
another.

The function by which the activation value of a node is related to an incoming Sgnd is
cdled the "activation function”. For a binary node, this function may be as smple as a binary
threshold, so that the value of the node is sat "on" if the input signds exceed a given threshold
level, and off otherwise. For nodes whose activation values may be multivaued, activation
functions may be more complicated, particulally when the activation vaues may dso be
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multidimensiond, but the binary representation provides a sound starting point for initid under-
ganding.

A sngle binary node can encode a pattern conssting of one bit of information. As the
number of nodes in a set increases, the amount of information which can be encoded incresses.
For a network whose input nodes are binary, information received from the environment may be
represented as a pattern of ones and zeros displayed over the input nodes. Thus, when a
network receives information from the environment, it does so by encountering a signd a each
input node a each point in time. Those nodes whaose input Sgnals exceed the threshold vaue
will be activated, while others will reman off. The pattern of nodes which are activated
congtitutes a pattern which represents the pattern of sgnds at that point in time. The changing
pattern of activations over time represents processes in the environment of which the network is
"aware."

The number, arrangement and character of the input nodes, dong with the character of
the activation function, determines what kinds of pattern the input system will be able to
represent. Mogt literature on neura networks and pardld data processing models considers
only one dimensona (vector) arrays of one dimensona binary or continuous nodes, snce the
underlying model for the node in these areas is generdly the neuron or the switch. In the more
genera case we consider here, nodes may themsalves be networks whose activations may be
highly multidimensiond.

A one dimensiona (vector) array of binary input nodes can record the presence or
absence of aset of features. Figure 1 shows a vector of nodes, each of which represents aletter
of the dphabet.
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ABCDEFGHI JKLMNOPQRSTUVWXYZ

X0X000000O0OOOOOOOOOOXOOOOOO

Neurons represented as a vector. Neurons marked

with "X" are activated, dl others are off.

This pattern could represent "ACT", CAT", "TAC",
"TCA","CTA", or "ATC", 9nce no sequence information
is encoded in this pattern. Multiple occurrences of

the same |etter cannot be encoded within this scheme.

Figure 1 A One Dimensond Locally Encoded Network

The nodes marked "A", "C" and "T" are on, which indicates that the network recognizes the
presence of those letters (festures) in the environment. The one dimensond array of nodes,
however, cannot encode the sequence of those features, so the pattern encoded in Figure 1
might represent "CAT", "ACT", or any of four other sequences of |etters.

A two dimensond array of binary input nodes can keep track of not only the presence
or absence of features, but also their sequence. Figure 2 shows atwo dimensond (metrix) array
of input nodes. As in Figure 1, each column represents a letter of the aphabet, but each row

represents an ordinal position in atime sequence.
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| nput neurons represented as a matri x. Columms rep-
resent |etters, rows represent ordina pogtionin
a sequence. This network of neurons encodes the
phrase "HELLO SPOT".

Figure2 A Two Dimensiond Localy Encoded Network

The pattern of activations shown in Figure 2 represents the English sentence "HELLO,
SPOT". Higher dimensiona arrays can represent correspondingly more complicated patterns®,

3 Assuggested earlier, in the more general case of multidimensional energy flows, it is possibleto find
arraysin which the nodes are themselves multidimensional. A multidimensional node can represent more
than one value simultaneously. Thisis quite acommon case particularly in social networks, where nodes are
typically themselves networks on another level of analysis. Like unidimensional nodes, multidimensional
nodes might take on binary, multivalued or continuousvalues,or a combination of these. In general, the
higher the number of nodes in a network, the higher the number of dimensions each node can encode, and
the higher the number of values per dimension the node can take on, the more complex the patterns the
network can represent.

11
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Distributed encoding:

Both the modds in Figure 1 and Figure 2 represent examples of "locd encoding’, in
which each node represents one feature. A mode which encodes a single feature as a pattern of
activations among several nodes embodies what is called is called "distributed encoding”, and
can gore congderably more information in a given number of input nodes. A st of 7 binary
nodes is sufficient to encode any of the ASCII characters, a 50X7 matrix of binary nodes can
encode the English sentence "The quick red fox jumped over the lazy brown dog,” -- or any
other string of fifty ASCII characters -- including capitalization and punctuation.

Communication Processes and Network Structure:

The modd presented up until now has considered only sts of nodes each of which
communicates with the environment, and none of which communicates with each other. Thegter
marquees and televison screens are examples of this class of network. But while the patterns
they can encode can be very daborate, they are passve copies of the environmenta input and
exhibit essentidly no interna processing. Nodes may, of course, communicate with each other
a various levels. The channds through which nodes communicate have been caled varioudy
"links', "connections', "weights' and other terms, and those terms will be used here as
synonyms. These weights may in generd take on any red vaue®, and are meant here to
represent the proportion of the activation level of any node that will be transmitted to another
node to which it is connected by that channd. Thus the weight w; ; represents the proportion of
the activation vaue of the iy, node that will be communicated to the j, node.

4 Sometimes, particularly in the case of social networks, precise data about the actual weights or
connection strengths is not available to investigators, and so a considerable literature existsin which the
connections between nodes are discussed and analyzed asif they were binary. Whatever measurement
difficulties might be encountered in any empirical situation, however, this practice is clearly inadequate for
the investigation of intelligent, self referencing networks, since these are sensitive to very small variationsin
weights. In the case of the SPOT and ROV ER programs discussed below, rounding the weights at the third
decimal place resultsin serious deterioration of performance.
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How anode will respond to the inputs it receives from those nodes which communicate
with it is determined by its "activation function." The activation function determines how a node
will combine the various Sgnds it receives from dl those nodes connected to it. The actud array
of potentid activation functions is infinite, but they may be described in generd from smpler to
more complicated functions.

The fird is the ample linear function, in which dl inputs to a given node are summed,
and that node then outputs asigna which is the sum of dl its inputs. Smple linear networks can
have substantid information storage and retrieval capacities, but cannot produce interna
representations of environmentd patterns that differ from those in the environment, nor can they
perform complex inferences, such as the "exclusive or" rdation. Included within the class of
linear networks is the perceptron, which was sudied extensvely by Rosenblatt (1962) and
Minsky and Peapert (1969) who first demongtrated the limitations of inference inherent to the
linear two layer network.

A second common activation function is a smple step function, in which a node outputs
agiven vaue if the inputs to it sum to more than a given threshold®. Even such asimple rule as
this introduces important nonlinearity into a network which makes it capable of generating
interna representations of external patterns which are not smple linear combinations of externa
sgnds, and thus subgtantialy increases its inferentia cgpabilities. Non linear networks can solve
problems like the "exclusve or" reation (Rumelhart, et. al., 1986, pp. 318-362, McCldland &
Rumelhart, 1988, Chapter 2). The step function, however, is not everywhere continuous, which
causes mathematicd difficulties for some learning agorithms.

A third commonly used activation function is the logigtic function, sometimes referred to
asa"sgmoid"” function, because its shape when plotted resembles an integrd sign:

ap =1/ (1+ e—netpj)

5 The concept of athreshold function is appropriate particularly for social networks, where a
communication from one or more nodes may activate another; e.g., "Please call meif anyone calls', or "If
there are too many complaints, contact Quality Control".

1R
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where:
a; =theactivation of the ji, node for the py, pattern, and
net,; = the net input to the ji, node for the py, pattern from
al input nodes.

Thelogidtic function is particularly useful Snce it provides the nonlinearity and incressed
inferential capacity of a sep function, but is a continuous differentible function. This is
particularly important in supervised learning or "back propagation” models, since these require
that the differences between the pattern output by a network and the desired or "target” pattern
be expressed as a continuoudy differentiable function of the weights so that the weights may be
changed to produce the correct output (Rumehard, et. al., 1987,pp. 318-362).

Each of these activation functions establishes the activation vaue of the node soldly asa
function of the inputs from other nodes, but more complicated modes can take into account the
present absolute or relative activation value of the node. These considerations produce another
family of activation functions such as "competitive learning”’, in which nodes areedy highly
activated are more likely to be further activated for agiven leve of input than those not so highly
activated (Grossberg, 1976), or "resonance’, in which sets of interconnected nodes, once
activated, will tend to maintain each other's activation levels (Grossberg, 1978).

Activation functions can take into account variables other than the set of inputs from
other nodes and the activation value of the node itsdlf. Time is perhaps the most common such
variable, and is usually included to modd adecay function such that the node loses a proportion
of its activation as a function of time. This decay functions as a "restoring force" which tends to
refurn nodes to ther "reding activation leves' as a function of time (Grossberg, 1978;
McClelland & Rumelhart, 1988, pp. 12-15).

Activation functions need not be determinigtic. Severa important models, such as the
Harmony Mode Smolensky, 1987, pp. 194-281) and the Boltzman Machine (Hinton &
Sginowski, 1987, pp. 282-317) employ stochastic activation functions, in which the likelihood
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that a node will be activated is a function of the inputs to that node. Stochastic modes may well
be better representative of actud neurd functioning, but are dmost certainly more representative
of the way inputs function to activate or fal to activate nodes in socid networks than
deterministic models, at least insofar as the greast complexity of input patterns in socia networks
usudly precludes complete measurement of the totd net input to any node.

I nformation Processing and Network Structure:

The weights, dong with the activation functions for each node, make up the structure of
the network and determine the patterns of flow of information through the network. These flows
in turn determine the process by which a network receives information from the environment,

congtructs an interna representation of that information, and outputs a response.

Figure 3 shows a hypothetical network consisting of six nodes representing the words
"Ca", "Dog", "Barks', "Howls', "Meows', and "Purrs'.

18
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| nput = "Meows"

Cat Dog Barks Hows Meows Purrs

Cat -.8 -.9 .2 . 8 .9

Dog -.8 .9 .3 -.8 -7

Bar ks -.9 .9 .5 -.3 -.9

How s .2 .3 .5 -.2 -1

+1 Meows .8 -.8 -.3 -.2 . 8
Purrs .9 -7 -.9 -.1 . 8

on off off of f on on

Figure 3 Spreading Activation Network 1

Each of the nodes may take on the vaue "0" (off), or "1" (on). The nodes are connected to
each other by weights which represent their relative "doseness' in the network.? They
communicate with eech other by a smple threshold rule: the Sgnd sent from any node i to any
node j equas the product of the activation vaue of i and strength of the connection between |
and j. Thus the total signa received by any node j will be the sum of the signds received from
al the other nodes, or

— 2 N
anet = a j-; W; a,

The way a node responds to the set of signals it receives is determined by its activation
function; in this case we adopt the rule that the node will be activated if the sum of its input
ggndsis pogtive; otherwise it will be turned off, or

+1if x>0

8 In the present example, the weights are essentially the correl ations between frequencies of occurrence
of the variouswords. Thus"Meows" and "Cat" tend to "go together”, with aweight of .8, while"Meow"
and "Dog" have a negative coefficient of --.8.
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& = unchanged if x=0
-1ifx<0

Following this rule, we assume the network receives the input "Meows' from its
environment (i.e, the node which represents "Meows' has been activated.) This sets the
activation vaue of "Meows' a +1, and the activation vaues of the other nodes a 0. Multiplying
the weights in each column by the activation vaues of the corresponding rows, then summing
within each column shows that the activation of the node "Meows' will "spread” to the nodes
"Ca" and "Purrs’, setting thelr activations to 1, but will leave the nodes "Dog", "Barks' and
"Howls' off.

Figure 4 shows that activating the node "Howls', will dso activate the nodes "Cat",

| nput = "How s"

Cat Dog Barks Howls Meows Purrs

Cat -.8 -.9 .2 . 8 .9

Dog -.8 .9 .3 -.8 -7

Bar ks -.9 .9 .5 -.3 -.9

+1 How s .2 .3 .5 -.2 -.1

Meows .8 -.8 -.3 -.2 . 8
Purrs .9 -.7 -.9 -.1 . 8

on on on on of f of f

Figure 4 Spreading Activation Network 2

17
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"Dog" and "Barks'; Figure 5 shows that activating both the nodes "Barks' and "Howls' will dso
adtivate "Dog’", but will leave"Cat", "Meows' and "Purrs' off.’

| nput = "How s" and "Barks"

Cat Dog Barks Hows Meows Purrs

Cat -.8 -.9 .2 . 8 .9

Dog -. 8 .9 .3 -. 8 -7

+1 Bar ks -.9 .9 .5 -.3 -.9

+1 How s .2 .3 .5 -.2 -.1

Meows .8 -.8 -.3 -.2 . 8
Purrs .9 -.7 -.9 -.1 . 8

of f on on on of f of f

Figure5 Spreading Activation Network 3

This example shows clearly that communication among the nodes of the network
produces an gpparently quditative change in the pattern recognition and storage capabilities of
the network. When the nodes do not communicate, the network can represent a pattern of
virtudly any complexity when activated directly by the environment, but the complete input is
required to produce the complete pattern. When the nodes communicate, however, the
complete pattern can be produced with only a partid input. When a sufficient subset of the
nodes in a stored pattern is activated, the activation of those nodes will "spread” through the
links and in turn activate the rest of the nodesin the pattern.

7 A more thorough example would examine the results of the communication after more than the first step
or "cycle" of the network. This exercise can produce a surprising amount of complexity very rapidly,
particularly in real cases where finite speeds of communication determine the order in which nodes are
turned on or off. The activation of the node "Howls", for example, turns on both "Barks"' and "Cat". But
since"Dog" and "Cat" are so strongly negatively connected, each turns the other off. If "Howls"
communicates its activation to "Dog" before"Cat", "Cat" will not be activated. If it communicatesits
activation to "Cat" before "Dog", "Dog" will not be activated. This phenomenon is referred to as
"hysteresis" (McClelland & Rumelhart, 1988, pp. 16-17).




19 -- Intelligent Groups

It is worth emphasizing the fundamenta role communication as it has been defined here
plays in this process. A pattern is stored by "connecting” its dements together. Things that "go
together” are "closg". Nodes or dements in turn communicate their activation vaues to other
nodes in proportion to their doseness in the communication network. If a node is "on", it will
tend to transmit that "on-ness’ to other nodes through the links between them, so that the "on-
ness' will spread to other nodes which represent the other eements in the pattern. Smilarly, if a
node is "off", it will tend to communicate its "off-ness’ to other nodes through the links between
them. The entire pattern is encoded in the pattern of communication among the nodes as
connections or weights, and can be recovered by the activation of any suitable subset of

nodes.

Conversational Networks:

The main characterigtic of communication networks as we have discussed them hereis
their ability to represent patterns and to associate one pattern with another®. In the most general
sense, conversations may be construed as sequences of patterns, with each utterance
consdered a pattern of sounds, words, or even letters. With this in mind, it is possble to
construct communication networks whose dructures are optimized for the recognition and
asociation of linguigtic patterns. The process of congtructing a communication network conssts
essentidly of defining the pattern of communication links which are dlowed among the nodes.

Although it is possble in principle to conceive of every node in a network
communicating with every other node, in concrete Situations such networks sedom occur. In the
human brain, for example, conventional estimates set the number of neurons a about 10, but
each neuron is generaly thought to connect to perhaps between 10° and 10* other neurons.

8 Patterns, like networks, may be arbitrarily partitioned. It may be convenient for some purposes, for
example, to consider the phrase "How are you?"' to be a single pattern, and to consider the phrase"I'm well,
thank you" to be another. Or it may, for other purposes, be useful to consider both phrases part of asingle
pattern. Depending on the arbitrary terminology employed, a network might be considered a
"heteroassociator", which associates one pattern with another or one part of a pattern with another part, or
an " autoassociator”, which associates any part of a pattern with the entire pattern.

10
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Similarly, athough there are about 5° people on the earth, each person communicates with only
avery sndl subsat of them, and communicates subgtantidly with only afew.

A Feadforward Mewral NHetwork

In fact, condraints on which communication links may not be made -- that is, which
weights must dways be set to zero -- determine the overal structure or architecture of a
network. Figure 6 shows a smple yet interesting information processing network: a three layer
feed-forward network. The row of nodes at the top of the figure represent input nodes; they are
connected to a row of hidden nodes, which in turn are connected to a row of output nodes.
Nodes within arow are not connected to each other, nor are any of the input nodes connected
to any of the output nodes except through the hidden layer, and these connections are
themsdlves only one way paths. Input nodes may communicate to the hidden nodes, and hidden
nodes to the output nodes, but the reverse processes -- hidden to input and output to hidden --
are prohibited.

A network of this configuration can receive inputs from its environment, form an internd
representation of the input patterns in the hidden layer, and output a pattern corresponding to
the input pattern. The pattern of weights between the input and hidden layer and the hidden and
output layer will determine the relationship of the output pattern to the input pattern.

A network of this generd configuration is implemented in he FORTRAN program
SPOT. Itsthe input and output layers are each in the form of the 50X 7 matrix described earlier,
with a1 X 115 vector of hidden nodes between them. Each of the 7 nodes in each row of the
input and output matrices are required for the distributed encoding of each character in the
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ASCII s, and each row of the input and output layer is thus able to represent one such
character. This network can learn to associate a number of utterances or "strings' of up to 50
characters with any other arbitrary set of strings of up to 50 characters® The "memory” of what
output strings "go with" what input strings is contained entirely in the pattern of weights among
the layers.

The network works as follows. input strings of letters are "encoded” into their ASCII
representations which condsts of a seven digit aray of 1's and Os and each node
corresponding to a 1 in the gppropriate row of the input matrix is turned "on", (that isits
activation vaue is st to 1), and dl others are turned "off", or set to zero. Each |etter in the string
of letters thus corresponds to one row of the 50X 7 matrix of input nodes.

The activation vaues of the input nodes (either 1 or 0) are multiplied by the weights
which represent the communication strengths between the input nodes and the hidden nodes.
The activation vaues of the hidden nodes are then caculated from the activation function given
in equation (1) above -- that is, their vaues are set asthe logigtic of the sum of the activations of
the input nodes multiplied by the weights from input to hidden nodes. The pattern of activetions
of the hidden nodes represents an internal symbolic representation of the input pattern, and
serve an intermediary role between the input pattern and the output pattern. The mapping of the
input pattern asit is encoded on the input neurons onto the hidden neurons represents an interna
restructuring, and, (in the case of the SPOT and ROVER dgorithms presented here) more
parsmonious form of the input paitern, but it is fair to say that a complete understanding of the
way in which hidden nodes functions awaits a good ded more research. It is known, however,
that the hidden layer makes possible solutions to problems that cannot be solved by linear
modes (Minsky & Papert, 1969; Rumelhart, et. a., 1986, pp. 318-362, McCldland &

9 How many such patterns the network could learn would be determined by the number of connections
possible between the layers, which in turn is determined by the number of nodesin the layers. For input and
output layers of fixed size, asin the present example, increasing the number of nodesin the hidden layer will
increase the number of patterns the network can learn.

21
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Rumehart, 1988, Chapter 2). The level of complexity of the internd symbolic structures that
can be formed, and the level of complexity of the functiond relations between input petterns and
output patterns that can be learned by anetwork are related to the number of hidden neurons™.

The activations of the hidden nodes are then propagated to the output nodes by exactly
the same process. (The vaues of the weights determines completely what output nodes will be
activated for any given pattern of input node activations, and thus determines uniquely what the
network will output or "say" for any given input. How the weights are actudly st will be
discussed below.) These output nodes are then 'thresholded”; thet is, if their calculated vaues
exceed an arbitrary threshold value, the are set to 1, otherwise they are set to zero. The
resulting 50X 7 binary matrix of output nodes can then be "decoded” into the appropriate ASCI|
characters.

A network like SPOT can be taught to associate any input phrase with any output
phrase by setting the communication weights appropriately. Thus, for example, it is possible to
choose a sat of weights such that the pattern of activations of input nodes corresponding to a
phrase such as "How are you, SPOT?" turns on the set of output nodes which correspond to
the phrase "I'm fine, thank you," while the paitern of input activations corresponding to another
phrase will activate a pattern of output nodes corresponding to still another phrase. How many
such pairs of input and output patterns the network can learn is a function of the number of
nodes and the degree of amilarity among the patterns.

10 | ncreasing the number of hidden nodesin an otherwise unchanged network increases not only the
number and complexity of associations the network can learn, but also increases the speed with which it can
learn them. Thisfact is somewhat confounded when the parallel architectureis simulated on aVonNeumann
machine, since the number of operations the algorithm must perform increases as a function of the number
of connectionsin the network. The SPOT algorithmfor example, learned asimpletraining setin 1,005
seconds with 55 hidden nodes, but took 27 trials to do so. Increasing the number of hidden nodesto 75 cut
the time to 757 seconds and reduced the number of trialsto 15. Increasing the number of hidden nodesto
100 reduced the number of trialsto 14, but increased the time to 960 seconds. | ncreasing the number of
hidden nodes to 115 reduced the number of trialsto 12 and the time to 935 seconds. If the network were able
to carry out its activitiesin afully parallel fashion, increasing the number of nodes would resultin a
monotonic reduction in both number of trials and overal time.



23 -- Intdligent Groups

Forming and Changing the Network Structure:

There are two fundamentd types of patterns implicit in the discusson up until now. The
fird are the patterns composed of the activation vaues of the nodes at a given moment, or the
changing pattern of activations across an interva of time. These patterns, however complex they
may be, are trangtory and represent the image a network is displaying a a historicd time. In a
neurd network, they represent the "thoughts' the network is exhibiting, while in asocid network
they represent the "currents of opinion” (Durkheim, in Simpson, 1963, pp.27-27) flowing
through a culture at any moment.

The second type of pattern is represented by the much deeper, more stable patterns
represented in the set of weights in the network. These weights represent the rdatively stable
basc dructure of the network and the set of relationships among the other patterns. They
represent not what a network is "thinking" at a given moment, but what it has learned since its
inception. While the activation vaues of the nodes a any given moment determine the pattern a
network is displaying at that moment, the memory of dl patterns known to the network is
contained in the pattern of weights or communication patterns among the nodes. The processes
by which these weights are formed and changed, therefore, are centrd to whatever intelligence a
network might exhibit.

The firg generd type of processes by which the architecture of a network can be
changed might be considered causal or perhaps accidental processes, that is, processes in
which forces from the environment impose themsdlves on the network and its components
without any deliberate god in view."! Perhaps the most common such process is that suggested
in broad outline by Hebb (1949): Weights among nodes which are sSmultaneoudy activated are
strengthened.” The logic behind the Hebbian rule is quite straightforward: when a network is

11 These forces include genetic forces which determine the structure of neural networks, geographic and
climatic forces which influence social networks, aswell as accidental forces which may alter or disrupt the
structure of any network.

12 Hebb did not provide an exact mathematical form for this rule, and minor variationsin form are
abundant. The weights in the examples presented in Figures 3, 4 and 5 are given ascorrelations among the

23
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displaying a given pattern as a set of activated nodes, it can "remember” or Store that pattern by
connecting together the nodes which represent the pattern so that they tend to be activated as a
unit. If the rule which "ties together" nodes which are smultaneoudy active is dways automati-

caly enforced, then such a network will tend to store any pattern it displays automaticaly. If the
rule is repeatedly enforced, then each time a pattern is displayed by a network the connections
among its condtituent nodes will be strengthened and the network's memory of the pattern will

be reinforced. If the initid activation vaues of the nodes are set by inputs from the environmert,
then the Hebbian rule guarantee that such a network will develop a memory of the mgor
features of its environment, and will sdectively favor the recollection of those patterns most
frequently presented to it by the environment.*®

A typicd example of a Hebbian learning network is CATPAC. CATPAC is acomputer
program which reads ASCII text which has been divided into "episodes’, which are arbitrary
ddinesations supplied by the andyst.* CATPAC then parses the text into words, and counts the
number of times each word occurs in each episode. This words by episodes matrix E is then
postmultiplied by its trangpose to caculate the words by words matrix W which represents the
frequency of cooccurrence of dl possible pairs of words within each episode. These cooccur-
rence frequencies may be thought of as connection strengths or weights between pairs of words.
Those that "go together” mogt frequently are mogt tightly connected. Suitably normalized,
CATPAC will produce networks of the kind shown in Figures 3 through 5 (Wodfel, 1987).

A network whose weights are determined solely by a variant of the Hebb rule or other
causa mechanisms becomes "like' it's environment in a wholly passve way. A second set of
processes by which network structure can be changed might be caled pur posive or supervised
processes. One such dternative, which is itsdf a variant of the Hebb rule, has been suggested

occurrences of the items, or in the terminology developed here, correlations among the frequencies of
activations of the nodesin the patterns.

13 The Hebbian rule has certain limitations which are well understood in the Parallel Data Processing
community. Among the most important is the tendency to confuse similar patterns.Since similar patterns will
be encoded into similar weights, presentations of partial information about highly covariant patterns will
result in frequent confusions among the patterns (McLelland, et. al., 1987, p.38).



25 -- Intdligent Groups

by Rumelhart, et d, (1987, pp 318-362).The essentid fegture of this "back propagation” mode
is the exigence of a "target” pattern, that is, a pattern which is, for any arbitrary reason,
considered to be the "correct” output pattern for a particular input pattern. In the conversationd
networks described above, for example, the output pattern "I'm fine, thank you." is the "correct”
pattern the network is expected to output when receiving the input pattern "How are you,
Spot?"

The target pattern represents a pattern of activation values of the output nodes of a
network corresponding to the desired output. The difference between the pattern desired and
the pattern actudly output by the network can easly be defined as the difference between the
activation values of the nodes observed and those expected by the pattern. These differences
may be considered the errors produced by the network. These errors can of course be
described as a function of the activations of the nodes, which can in turn be expressed as a
function of the weights connecting the nodes. It is possble, then, to express the errors as a
function of the weights. If the activation functions of the nodes are continuous (as is the logigtic
function typicaly used in back propagetion networks), then the derivative of this function is
defined everywhere on the function, and it is easlly possble to modify the weights (usudly by a
quas steepest descent agorithm) until the error is minimized™. Such a network can learn to
produce a desired output pattern for a given input pattern.

Both the SPOT and ROVER agorithms described in this paper are back propagation
models, they are supplied with a set of input phrases dong with the set of desired output
phrases associated with those inputs. Connections between input and hidden nodes and hidden

14 An "episode" can represent any arbitrary delineation of text. Each episode might represent asingle
interview, or the answer to a single question, or asingle page or asingle line of text, or any other arbitrary
boundary,

15 Notice that this process occurs "backwards" through the network, beginning with the errors of the
output nodes, then moving to the weights from hidden to output, then to the activations of the hidden
nodes and then to the weights from input nodes to hidden nodes. Thisbackwards sequence is the basisfor
the name "back propagation.”
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and output nodes are initidly randomized, so that when the network receives an input pattern,
the response it outputs is Smply a random activation of the output nodes. The errors are then
cdculated as the differences between the actual values of the output nodes and the vaues
associated with the correct pattern. By a quas steepest descent dgorithm, the weights of the
connections among the nodes are then modified until al the correct response peatterns are
associated with the appropriate input patterns.

These networks are "trained” by presenting them with lists of paired patterns. The firg
pattern in each pair of patternsis an "input pattern”, and represents a given pattern of activation
of the input nodes of the network. The second pattern in each pair represents the pattern of
activation of the output nodes which is meant to be associated with that input pattern.

When the input pattern isinitidly displayed, the (initidly random) connections between
input and hidden nodes and hidden and output nodes causes a random pattern of activation of
the output nodes. The vaues of this output pattern are subtracted from the vaues in the "target
pattern” and the differences represent error. These errors can then be expressed as functions of
the activations which in turn are expressible as a function of the weights. The derivative of this
function is then caculated and the weights are modified, the input pattern is presented again and
the process is iterated until the errors fal below a specified tolerance. Because the activation
function of the nodes in SPOT, ROVER and ROVER Il are nonlinear (logigtic) functions, this
procedure is essentidly an iterative non-linear multiple regresson mode which finds a set of
weights which maps the pattern of input activation values onto the desired pattern of output

activations.
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Figure 7 shows SPOT leaning the
"correct” responses for two phrases. to the
phrase "Hello, Spot!", it is expected to say
"Hello.", and to the phrase "How are you, Spot,”
it is expected to reply "I'm well, thank you." As
implemented in SPOT, the network requires 8
tries to get both responses correct, athough the
network "overlearns' for two more iterations (not
shown) until the error is within the prespecified
tolerance.

The network begins by producing a
random response to the initid inputs, but quickly
learns the correct response through a series of
successive approximations, each time closer to
the pattern than the last. Figure 8 shows errors
for each iteration, dong with the elapsed time for
eschtrid.
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Hello, Spot!
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How are you, Spot?
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How are you, Spot?
I'm well, thefk you.
Hello, Spot!

Hdllo.

How are you, Spot?
I'm well, thefk you.
Hello, Spot!

Hdllo.

How are you, Spot?
I'm wdll, thank you.

Figure 6 Three Layer Feedforward
Network SPOT Learning Two Phrases

(Didogue)
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Table One: Tota Squared Error by Elapsed
Time for Learning Two Phrases.”

CunEl apTime Tot ErrSqrd El apsed Tine

16. 92000 22. 85055 16. 92000
29. 55000 27.98030 8.40000
42.85000 24. 09617 8. 68000
55. 20000 16. 42570 8.18000
67.24000 12. 22997 7.86000
78. 66000 6. 93973 7.52000
89. 37999 2.93760 7.09000
100. 03000 1. 62046 7.03000
110. 63000 1.67598 7.03000
120. 73000 . 76299 6. 59000

*) Rate = 1.000 Momentum = .300 Hesat = .000
Threshold = .500 Locd Tolerance= .300
Nodes:Input = 210 Output = 210 Hidden = 115
Taoshiba 30386 @20mhz with 30387 coprocessor

Figure 7 Three Layer Feedforward Network SPOT Learning Two Phrases

The vaues of the weights represent the learned pathways of communication between
the input nodes and the output nodes. They represent the network's "memory” of what string of
ASCII charactersit should output for any given input string of ASCII characters.



29 -- Intdligent Groups

Such a network can be taught to

cary on a rudimentary conversation. |Conversationwith Galileo* SPOT
: = Other; S: = T

("Teaching" the network consists exdusivdy O: = Other; S = SPO

of sdting the weghts or communication | O: How areyou, Spot?

drengths between input and hidden nodes S I'mwell, thank you.

and hidden and output nodes,) For an input | O: How are you, Sopt?
3 I K you.

phrase such as "How are you, Spot?’, it might S 'mwll, thank you

be taught to respond "I'm fing, thank you." | O: How areyou?

What's more, as shown earlier, because the St Imwl, thenk you.

activation vaues of the output nodes are de- | O: Hou art yee, Spet?
termined by the entire pattern of activations in S 'mwell, thank you.
the layers preceding them and the entire | O: How are

S A'm wdl, thank you.

pattern of comnections among those layers,
the complete output pattern can be activated | O: How you doin', Buddy?
by an input of only part of the input pattern; S Agmweld, t_nk)>v,
minor misspellings of the input string, or even | O: Howdy do?

leauing parts of the input blank will still rest | — 7 Weldh phanc you

in the output of the entire pattern. Thus, for

Figure 8 Conversation with Three Layer Feed-

: o o
the input string "How are you, Sotp?', or just forward Neural Network SPOT

"How are you?', the network would respond
"I'm fing, thank you." As the input pattern deviated further from the pattern the network had
learned to associate with the output, the output pattern would degrade fairly gracefully, but
would retain the main features of the correct output pattern even with considerable distortion or
deletion from the input pattern.

Figure 9 shows a brief conversation with a three layer feed forward neurd network
(SPOT) in which the input pattern (marked "O:" in the figure) is gradually changed from the
pattern the network has learned to recognize. The network is able to output the correct

2Q
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response even after substantia changesin theinput pattern, but eventudly degrades as the input
pattern departs further from the learned pattern.

I nnovative Language:

As the previous example shows, the thresholding function guarantees that a network can
continue to produce without error an output pattern it has learned to associate with a given input
pattern, even when the input pattern differs to some extent from the pattern originaly learned.
One way, then, that a network deals with an innovative input pattern, thet is, one it has not
previoudy encountered, is to output the pattern that corresponds to an input pattern which is
smilar to the novel input pattern. As the example dso shows, however, as the input pattern
deviates il further from the origind form, the network outputs a pattern which dso differs from
the one learned. When these deviations are arbitrary, as they are in the example, the network
can produce an output pattern that is itsdf arbitrarily degraded or noisy. The network will, in
other words, produce a nove output when receiving a nove input, athough in this Stuation the
output will typicaly be meaningless, as in Figure 7. Such productions of novel but meaningless
output patterns in response to novel input patterns does not meet Chomsky's criterion that the
nove output be meaningful.

It is possible, however, for novel inputs to a network to be related in systematic ways to
input patterns the network has dready learned. When this happens, it is possble for the
network to output anovel paitern which it has not previoudy encountered, but which is il a
meaningful pattern.

A network identicd in sructure to the network shown in the previous example,
dthough employing loca rather than distributed encoding'®, was taught to associate the input

16 When a network of this type encounters two or more previously learned input patterns
simultaneously, it activates the combination of communication channels or connections appropriate to that
combined input set. This produces an output pattern which is a combination of the output patterns
associated with each of the input patterns separately. In the particular distributed encoding scheme
employed by the SPOT algorithm, this results in an output pattern which represents a set of ASCII
characters which, while a proper combination and in fact a valid inference, nevertheless requires additional
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pattern "GREET" with the output pattern "HELLO", and dso to associate the input pattern "MY
FRIEND" with the output pattern "BOB". When the pattern "GREET MY FRIEND" isinput to
the network, it responds "HELLO BOB". Neither the input pattern "GREET MY FRIEND" nor
the output pattern "HELLO BOB" has ever been encountered by the network before, but the
network is able nonetheess to generate an gppropriate English sentence which is a "correct”
novel response to the novel input pettern.

To be sure, thisis a very limited example of innovation, but, in principle, it responds to
Chomsky's (1972) argument that the number of possible English sentencesis smply too large to
have been learned and remembered, but must instead be generated from a set of internd rules.
(Chomsky, 1972, pp 11-12). The sentence "HELLO BOB" was "generated” by the network in
response to a novel input not previoudy encountered, but the network was not following any
rules in S0 doing. Nor was the nove response in any meaningful sense programmed into the

network, but rather was exclusvely the result of itstraining.

Self Referencing Networks:

A Metwork with Partial Feedback

interpretation to be understood. In the locally encoded network used in this example, each node representsa
single letter; thus when the network outputs a combination of these letters, they can be understood easily.

1
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The network shown in Figure 7 has severd interesting conversationd properties: it can
asociate appropriate linguistic outputs with

arbitrary language inputs, it can recognize a
known input pattern even if it differs fairly Conversation with Three Layer
subgantidly from the exact form in which it | Network with Feedback

was learned, and it can produce meaningful O: = Other; S, = Spot
and novel output utterances in response to | O: How are you, Spot?
nove inputs. It will, however, dways S: Im fine, thenk you
respond in exactly the same way to the same | O: How are you, Spot?
. . S Sill fine, thanks.
input pattern regardless of the context in
which it occurred. The network illugrated in | O: Oh, I'm sorry.

Figure 10, on the other hand, is somewhat | > 112 OK:

more sophisticated. This network resembles

Figure 10 Conversation with a Three Layer

the previous network except for feedback
preac P Network with Output Feedback

loops from the output nodes to haf of the

input nodes. This means that the input pattern which is associated with a given output pattern
includes not only the pattern from the environment, but aso the pattern previoudy output by the
network. This network need not respond in exactly the same way twice to any given input
pattern from the environment. The network in Figure 10 is self referential in that it tekes its
immediate past behavior as part of the pattern to which it must respond.

In ROVER, the computer program which implements this design, the feedback from
output nodes to input nodes is done after thresholding the output units. It is more appropriate to
think of this network as monitoring its behavior rather than its"thinking" . If the feedback loop
were implemented before thresholding, the input nodes would be aware of what the network
was thinking just before it "spoke”, but would not be aware of what it actudly sad. A more
sophigticated network (like the one implemented in ROVER 11, below) could, of course, be
aware of both by taking feedback from both places.
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Figure 11 shows a conversation between a network of this type and a person (other).
Note that the network responds differently to exactly the same input string depending on whet it
has previoudy said. The network has taken its past behavior into account in determining its re-
sponse to the input from its conversation partner.™’

While the network shown in Figure 10 is sdf-referentid in an important sense, the
network shown in Figure 12 is even more s0. The networks described so far associate input
patterns with output patterns through weighted communication connections from input nodes to
output nodes through hidden layers of nodes. When the network has learned an association, the
activation of the nodes associated with the input pattern will be channdled through the weighted
communication channds to the nodes associated with the proper output pattern. It is aso
possible, as shown earlier, for anove input pattern to be related in a systematic way to patterns
which a network has previoudy learned, so that the network "knows' a correct response for
even these nove input patterns. But when an input pattern that the network has not learned to
associate with any particular output pattern is input to the network, it will output an arbitrary
nonsensica pattern. The network does not know whether it "knows' what it is about to say, and
will produce babbling for unlearned input paiterns.

17 While the network implemented in ROV ER takes into account only the last utterance the network has
made along with the new input from its conversation partner, there is no reason in principle, nor any
particular technical difficulty in extending the model back for as many stages as desired; a network can
easily be programmed which will take into account the last two or four or eight or any number of previous
exchanges in determining what it should output. It is also easily possible to weight earlier episodes
differentially, giving them successively less weight as they recede into the past. How many stages (or how
long inreal time) anetwork ought to take into account in determining its response in order to be an
interesting conversaion partner remains an unanswered empirical question, but presents no special
programming difficulties. Such networks could not be accused of "linear, sequential” thinking, since they
might well revise their understanding of a previous utterance given alater one.

K]
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A Network with Partial Fecdback
and Output Monitoring

Figure 11: Network with Feedback and Output Monitoring

It is quite important that a self-referentia network like ROVER not babble, snce such a
network will necessarily take into account the immediate history of a conversation as the pattern
towhich it must respond. If that history contains a sequence of random or arbitrary utterances,
there will likely never be a conagtent pattern for the network to learn, which would seem to
present aformidable barrier to developing conversational competence.

The network in Figure 12 has an additiona node which monitors the other output nodes
to determine whether they are patterned or not. In order to understand how this monitor node
operates, it is useful to recal that the network represents a pattern by turning some of its output
nodes "on" and turning the rest "off". When the network is representing a pattern it has learned,
therefore, its output values dl be ether nearly 1.0 or 0.0. (Since the activation function for this
network is the logigtic, actual vaues range closer to .9 and .1.) When the network is
representing arbitrary or random nonsense, on the other hand, the values of the output nodes
will take on the full range of vaues between 0.0 and 1.0, with a mean vaue of about .5. Thus a
network which is representing a learned pattern will have output activation vaues that are
maximaly different from the mean activation leve.

Input to the monitor node, then, consists of the (squared) differences between the actua
vaues of each output node and .5, the mean vaue expected for an arbitrary nonsense output.
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Once gppropriately normalized, these vaues are summed and entered into the activation
function for the monitor node; if its actua activation exceeds a preset™® threshold, the monitor
node "senses' a learned, patterned output, and activates the network’s output. If, on the other
hand, the activation vaue of the monitor node fals below its critical threshold, it is quite likey
that the pattern represented by the output nodes is smply an arbitrary, unlearned nonsense
pattern. In this case, the network’s output is set to "blank”. It is important to note that this node
does not determine whether the output pattern is "correct” or "sensble’, but smply can detect
the difference (in most cases) between a systematic, patterned output and gibberish.

While it would be wrong to attribute too much sophigtication to the modd implemented
in ROVER, the monitor neuron goes beyond smple sdf reference, and adds a minor but
nonetheless important self eval uative dimension to the network. While the modd implemented
in ROVER is"aware" of its past behavior and takes it into account in determining its subsequent
behavior, the modd in ROVER |1 is aware of both its past behavior and certain characteristics
of its present "menta gate' or "thinking", and it "evauates' that Sate before implementing the
action implied therein.

While the networks implemented in the SPOT and ROVER dgorithms show in principle
that one may congtruct conversationa, self referencing sysems of communication networks,
they are in fact very smple, smdl and limited networks. The largest (ROVER 1) conssts of
only 601 neurons, and 39,725 possible communication links®. Compared to a single human
brain, with perhaps 10" neurons, these networks are minuscule. Further, while the most

18 Whilein the ROVER Il implementation this threshold is hardwired, it would be a straightforward
modification to make its value depend on inputs to the network, so that, for some kinds of input, the network
would be very careful not to babble; that is, to make very sureit "knew" what it was about to say before
responding, while, in response to other inputs, it might be more willing to guess at a response even though
therewas a high likelihood it was nonsensical.

19 There are 350 input neurons, 75 hidden neurons, 175 output neurons and one monitor neuron. There
are thus 350 X 75 = 26,250 possible pathways from the input layer to the hidden layer, another 13,125
pathways from the hidden layer to the output layer, 175 pathways from the output layer to the monitor
neuron, and 25 feedback pathways from output to input.
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sophigticated of the networks described here, the architecture of ROVER 11 is sverdy limited
compared to that of asingle human individud. ROVER |1 has only one input "sensg’: its input is
restricted to 50 ASCII characters from afile or keyboard, while a human individua can receive
information from multiple senses. The smultaneous activation of nodes comected to visud,
auditory, taste, olfactory and tactile senses, coupled with a smple Hebbian learning rule which
enhanced the connection among those nodes smultaneoudy activated, make possble the
formation of complex internd patterns which can be activated by partiad inputs, so that a picture
of food, for example, could produce the same pattern as the taste or smell of the same food.
This is in principle possble for an atificid network like ROVER 11, dthough the technica
difficulties of amulating such massve paraldism on Von Neumann architecture machines are for
the moment quite formidable. (Although the ROVER Il architecture is completely pardld, its
implementation is Smulated on a Von Neumann serid mechine. This means that it cannot
actudly do any two things smultaneoudy, and must take in information in "batches' and operate
in discrete "jumps’ or "cycdes'.)

ROVER 11 is thus substantialy handicapped when taking in information needed to
define its socid gtuation; it may well be more gppropriate to compare it to a person who
recaived dl his or her information about the world from a teletype which could ddiver only 50
ASCII characters a atime. In spite of these limitations, however, ROVER Il provides a useful
bass for underganding the way in which the basic structure of a network functions in the
processng of information which can be ussful to an andyss of socid networks and their

information processing capailities.

I nformation processing in social networks

In a socid network, each individud is him/hersdf a network of subgtantial size, and can
thus be thought of as a multidimensiond rea valued node. Socid networks, which can consgt of
many individuas, thus have atota number of nodes many times this figure.
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Networks consgting of arrays of multidimensiona red-vaued nodes can store very
complicated patterns. Humans and organizations represent nodes which can produce highly
multidimensiona red-valued outputs. As an illustration of the pattern storage and recognition
capacity of networks of this type, agroup of students heard the following paragraph read aoud:

| have a very smdl bedroom with a window overlooking the hegth.
Thereisasngle bed againg the wal and oppositeiit is a gas fire with agasring
for bailing a kettle. The room is so smdl that | Sit on the bed to cook. The only
other furniture in the room is a bookcase on one sde of the gas fire next to the
window -- its got al my books on it and my portable radio -- and a wardrobe.
It stands againgt the wall just near to the door, which opens amost directly onto
the head of my bed. (Johnson- Laird, 1983, pp. )

Afterward, each of them was asked to report their estimates of the distance between
each of the 13 objects mentioned in the paragraph and each of the others, which represents a
highly multidimensiona output of 78 red vaued numbers per person (node). The numbers for
each distance were entered into the Galileo Verson 5.4 computer program (Wodfd & Fink,
1980), which averaged® the distances over nodes (respondents) and generated the coordinates
of the 13 objects in gpace. The picture generated from this exercise is congstent with the room
in the text read to the students. Random splits of the data show the same room, as should be
expected. Thus the network of individuas recorded the pattern of the entire paragraph within a
sngle doud reading -- and could reproduce it accuratdy -- even though none of the individuas
reported being able to picture or draw the room.

This illudrates two important characterigtics of information processing networks. fird, a
network is capable of encoding very complicated patterns of information very quickly and of
retrieving it accurately. Second, it shows clearly that the information encoded is not a property

20 Averaging the valuesis avery simple but common function for numeric outputs which can be viewed
as anal ogous to thresholding. More complicated functions, such aslog transforms, trimming, and the like,
are often used, as are other measures of central tendency, but the concept of an aggregate pattern which
has meaning for a collection of nodes while essentially uninterpretable based on outputs from only asingle
node remains the same.
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of the individua nodes, since, in the example given, none of the individud nodes (individuas)
reports being able to picture or recal the overdl geometric structure of the room. Rather the
pattern exigts only in the network of nodes consdered as a whole. Moreover,in the present
example as wdll, it is possble to see that the information is stored in such a didtributed and
redundant way that the pattern can be retrieved from a reasonably sized random subset of the
nodes. This characteristic makes it clear how extensive networks such as organizations, nation
dtates and cultures can retain complex information patterns such as attitudes, beliefs and values
over generdions even when many or even dl individua nodes are logt to the system due to
immigration, death and other factors. Most importantly, however, this example makes it clear
that the network as a whole exhibits emergent pattern storage and retrieval capabilities

that go beyond those of the component nodes.

Sdf Referencing Social Networ ks

While the capacity of the socid network to store complicated patterns of information
quickly and to recover them even from subsets of the origind network is very substantid, the
sophitication of the network illustrated in the previous exampleis, in certain ways, less than that
illustrated in ROVER 1I. Like ROVER, this socia network can record a pattern and output that
pettern or a pattern related to it, but, unlike ROVER I, it, as a single entity independent of its
condtituent members, is itsdf unaware that it knows the pattern or not. In fact, if exactly the
same questionnaire is administered to a collection of people who have not heard the paragraph
reed, they will for the most part output arbitrary numbers and produce a "room™" which bears

only accidental relations to the room described in the text.* Moreover, as a direct consequence

21 Of course, each individual person in the sample will believe that he or she does not have a pattern in
mind which he/she is being asked to describe, but that belief also characterizes those who did hear one
reading of the description. In fact, no individual but the most exceptional does have an internal
representation of the room after asingle hearing. The issue here isthe larger sociological or cultural issue: in
the case where no one has heard the reading, neither the group as awhole nor any individual member of the
group has a sense of the overall pattern of the room. But in the case where the group has heard a reading, it
is still the case that no single individual has a clear grasp of the room as a pattern, but the group as awhole
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of thislack of self awareness, it is not possible for this socid network to correct whatever errors
might exigt in its representation.

The inability of the socid network in the example to be sdf aware and sdif correcting is
adirect conseguence of the smple architecture of the network, which conssts of (in the present
case) about 40 multidimensiond red-vaued nodes, each one of which serves both as an input
node and an output node. There are no hidden nodes, nor do any of the nodes communicate
with any other. There is no "monitor node’, which functions to compile the activation vaues of
the other nodes, and so the network, regardless of its information storage capacity, has
essentidly no cognitive capaecity whatever. It is essentidly nothing more than an eaborate
memory. The very smple network embodied in ROVER I, therefore, while quite limited
compared to a human individua,, can exhibit more complicated cognitive activity within the limits
of its very limited memory than the set of 40 human individuas with approximatdly 4 X10%
neurons, as long as no internal communication structure is allowed to develop among
those individuals. The reason for thisis that the size and complexity of any single pattern which
can be encoded by a network is a direct function of the number of nodes, the dimensonality of
the nodes, and the number of values each node may take on for each dimenson, but the
cognitive capacity of a network -- that is, the number of such patterns the network might store,
its cgpacity to associate them with other patterns, and its capacity to monitor its own activities --
is a function of the pattern of communication among the nodes. It is possible, therefore, to
construct an intelligent, self referencing network from a set of nodes which are
themselves not intelligent, and it is possible to construct a network of intelligent, self

referencing nodes which collectivdy is neither intelligent nor self-referencing.

Conclusonsand Implications:

does have such a pattern embedded in it. Like ROVER, however, the collective group has no idea that it
"knows" the pattern, even though it does know it.

29
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While none of the smple networks presented in this paper may be clamed to exhibit
anything more than the most rudimentary intdligence or sdf awareness, they illudtrate certain
factors that are essentiad to the development of an inteligent, self referencing, god directed
network:

Fird, there must exis a set of input nodes which receive information from the
environment, a st of hidden nodes, which dlow the network to form an internd representation
of the input information, and a set of output nodes which the network communicates information
to its environment. Second, there must be a pattern of communication channdls from the input
nodes to the hidden nodes and from the hidden nodes to the output nodes. Third, there must be
a set of communiceation links from the output nodes to the input nodes so that the network can
receive informetion about its own behavior. Fourth, there must exist a node or set of nodes
which monitor the output activetions of the network to determine whether those val ues represent
previoudy learned patterned information, and which can activate a "training mode” if the output
is not patterned so that the network can learn a response to the new pattern. Fifth, there must
be a set of nodes which encode a pattern or goal state which is associated with each input
pattern, which is intended to serve as the appropriate output for that input. Sixth, there must be
adefined error function which makes it possble to caculate the extent to which the pattern
displayed by the output nodes differs from the goa state encoded in the pattern nodes. Seventh,
the error function must be able to express the error as a function of the activation vaues of the
nodes. Eight, the activation values of the nodes mugt in turn be expressible as functions of the
weights or communication channels among the nodes.  Ninth, there must be some active
dgorithm by which the network is able to modify its internd pattern of weights to reduce the
errors. Tenth, the overdl functiond relations from input through hidden to output nodes must in
genera be non linear.

When these conditions are met, it will be possible for a network to receive information
from its environment, form interna symbolic representetions of that information, act (produce
outputs), monitor its actions, and modify its actions if they are ingppropriate. Networks which
meet these conditions can not only learn about their environment in a passve way, but can

actively modify their own configuration to produce desired outputs for given inputs.
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To be sure, the implementation of sophidticated, intelligent, saf referencing networks
with sufficient capacity to exhibit interesting behaviors involves no minor technica
accomplishment, particularly when smulated on Von Neumann architecture machinery. Nor are
the difficulties soldy technical. The monitor function described in the ROVER Il modd is quite
rudimentary, and can only determine whether a proposed output is patterned or not. Much
more sophigtication is required from a modd capable of interesting behavior. Certainly a more
sophigticated monitor would take into account the gppropriateness of the output for the
circumstances under which it was proposed. An interactionist model would require as well that
the network take into account the reaction of others in the communication Stuation. Cooley's
(1903) "looking glass self" modd requires that the reaction of others to one's behavior can result
in"...pride, mortification or shame,” which are emations well in advance of ROVER II's crude
capabilities.

Nonetheless, however crude the level of implementation, the fundamental architecture
employed in ROVER |1 represents a useful firgt step. Indeed, while the limitations of ROVER ||
are savere and obvious, it does exhibit cognitive abilities that some have clamed distinguish
human intelligence from machine intdligence: Frd, it can recognize limited language patterns and
asociate them with appropriate responses. Secondly, it is sdf-reflexive, and can observe its
own activity and teke that activity into account when determining its response. Third, it is
recursve, and can revise a past judgment based on new information; thet is, it need not dways
give the same response to the same input, but evauates each input in light of its previous activity.
Fourth, it is robust enough to provide the "correct” response even when the input is partialy
garbled or incomplete. Fifth, it can monitor its own interna cognitive date in a limited way,
evauate its potentia activity and modify that activity based on that evduation. And sixth, it can
learn to associate new patterns through interaction with others. Since ROVER |1 can do Al
these things, yet is dearly not remotdy "human”, these characteristics can not be the essentia
characterigics which digtinguish human intelligence from machine intdligence in a quditative
way. Whileit isimpossible to rule out the possibility thet there is a quditative difference between
what dgorithms like ROVER 1l achieve and the actions of intelligent organic sysems, it is
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important to point out that a leest a mgor component of the difference in cognitive capacity
between ROVER Il and a smple organic inteligence is atributable to the sheer sze differences
between these systems.

Equdly interesing is the potentid impact such modds might have on future
developments of socid network theory, particularly in the area of sdf referentid organizations
which may be dructured in such a way as to maximize the development of a collective sdf
awareness and collective sdf concept. Theorigts particularly since Cooley (1903) have
discussed the "we' as it develops in smdl, primary groups, but modern media and polling
technologies give promise of developing such "primary” and sdf referentid architectures for
much larger sets of people. While far beyond the scope of the present paper, these issues

promise red interest for future research.



REFERENCES

Cooley, C.H., Human Nature and the Socia Order, New Y ork, Charles Scribner's Sons,
1902.

Hebb, D.O.,, The Organization of Behavior, New Y ork, Wiley, 1949.

Hinton, G.E., and T.J. Sgnowski, "Learning and relearning in Boltzmann Machines',in
Rumehart, D.E., and J. L. McCldland, (Eds.). Padld Didributed Processing:
Explorationsin the Microgtructure of Cognition, Cambridge, MA, The MIT Press,
1986. pp. 282-317.

Johnson-Laird, P.N., Mentd Modds. Towards a Cognitive Science of Language. Inference and

Consciousness, Harvard University Press, Cambridge, MA, 1983

McCldland, J.L., and D.E. Rumdhart, Explorationsin Parallel Digtributed Processng: A
Handbook of Models, Programs, and Exercises, Cambridge, MA., The MIT Press,
1988.

McCldland, J.L., D.E. Rumdhart and G.E. Hinton, "The gpped of pardld distributed
processng”,in Rumdhart, D.E., and J. L. McClelland, (Eds.). Pardld Didributed

Processing: Explorationsin the Microgtructure of Cognition, Cambridge, MA, The
MIT Press, 1986. pp. 3-44.




Inteligent Groups -- 44
Mead, G. H., Mind, S&f and Society from the Standpoint of a Socid Behaviorist, C. Morris,

(Ed.). Universty of Chicago Press, 1934.

Minsky, M., and Papert, S., Perceptron, Cambridge, MA, MIT Press, 1969.

Rosenblatt, F., Principles of Neurodynamics, New Y ork, Spartan, 1962.

Rumdhart, D.E., G.E. Hinton, and R.J. Williams, "Learning interna representations by error
propagation”, in Rumehart, D.E., and J. L. McCldland, (Eds.). Pardld Digtributed Processing:
Explorationsin the Microgructure of Cognition, Cambridge, MA, The MIT Press, 1986. pp.
318-362.

Rumdhart, D.E., and J. L. McCleland, (Eds.). Pardld Didributed Processing: Exploraionsin the
Microgtructure of Cognition, Cambridge, MA, The MIT Press, 1986.

Simpson, G., Emile Durkheim: Sdections from hiswork, New Y ork, Crowell, 1963.

Smolensky, P., "Information Processing in Dynamical Systems. Foundations of Harmony Theory”, in
Rumehart, D.E., and J. L. McCldland, (Eds.). Pardld Didributed Processing: Explorationsin
the Microstructure of Cognition, Cambridge, MA, The MIT Press, 1986. pp. 194-281.

Wodfd, JD.,"The Gdileo Sysem: A Theory and Method for Analyzing Cognitive Processes’, in J.C.
Mancuso and M.L.G. Shaw, (Eds.), Cognition and Persond Structure, New Y ork,
Praeger, 1987.pp. 169-193.

Wodfd, JD., and E.L. Fink, The Gdileo Sysem: Theory and Method, NY Academic Press, 1980.




	genraltheory.PDF.pdf
	RahPress2009
	genraltheory

