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STANDARDIZED VERSUS UNSTANDAkDIZED DATA MATRICES:
WHICHTYPE IS MORE APPROPRIATE FOR FACTOR ANALYSIS

The issue of whether to use standardized or unstandardized coeffi-
cients in regression analysis has been the focus of several papers
(Blalock, 1964, 1967; Tukey, 1954; Turner and Stevens, 1959; Wright,
1960). Blalock (1967) suggests that when comparing coefficients across
sub-populations or samples, unstandardized regression coefficients are
appropriate. His rationale is that the standard deviation of a variable
can vary from sample to sample. If this occurs, the standardized form
of a variable will also be different across samples. Hence, observed dif-
ferences in standardized regression coefficients for a variable across
samples may be a function of differences in the standard deviation and
not real differences in the true value of the coefficient. However, when
comparing coefficients of variables measured on different scales within
a sub-population or sample, Blalock recommends the use of stan-

c dardized regression coefficients. The argument here is that standardiza-
tion transforms each variable to a comparable level of measurement.i While the sociological literature has treated the standardization

; question with regard to regression analysis, it has not considered as
~:carefully the question in terms of factor analysis. This technique is
, being used with increasing frequency by sociologists, particularly as a
method for scaling variables. In lieu of any guidance from the sociolog-

. ical literature, it might be assumed that the case for factor analysis is
analogous to that for regression analysis, and consequently, that the

? admonishments of Blalock for regression are applicable to factor analy-
. sis. However, this would be a faulty assumption. The utilization of stan-
dardized variables for factor analysis (either within or across samples)
has undesirable properties. It is important that the pitfalls of using



standardized variables for factor analysis be addressed, especially since ..
the majority of factor analyses are performed on standardized variables
in the form of a correlation matrix (Horst, 1965; Nie et aI., 1975).

The purpose of this paper will be twofold. First, it will examine the
drawbacks inherent in factor-analyzing standardized variables. This will
be done with a mathematical proof and an example from empirical
data. Second, the paper will suggest a factor analytic technique which
avoids the problems associated with standardized variables.

Factor analysis is essentially placing a set of reference coordinates
upon a set of variables and measuring the projection (loading) of each
variable on the coordinates. In factor analysis it is helpful to consider
each variable as a vector and the entire set of variables as a vector space.
In order to factor-analyze a vector space there are two major require-
ments; the vectors must share a common origin and the length of each
vector (its communality) must be known. In the past researchers have
been inclined to standardize. The common origin is ordinarily provided
by expressing the raw variables as deviation scores by subtracting the
variable mean from each variable value. The next step in the analysis
is then to standardize these deviation scores. However, this can only be
accoI)1plished through a non-linear transformation since each vector is
divided by a different value, its own standard deviation [1]. This non-
linear transformation is simultaneously effected on each vector length
with the vector length (standard deviation) becoming unit length. This
non-linear transformation of the vectors produces a non-linear transfor-
mation of the factor loadings. The following example offers proof of
this. Figure 1 portrays two unstandardized vectors in two-dimensional

space. The vectors shown here shan
terms of length. The length of these

lal = v'XI + x~ ... + x~

where: lal = length of vector a
Xi = coordinates in the vector
n = dimension of the vector s

Thus, the length of vector II is:

1m =J32 +32 =.j18
and the length of vis:

Ivl = )32 + 12 = ViO
To standardize these vectors (transf
sary to divide each vector by its own

-, 1 3 3II =--( . )v'18

-, 1 "1v = - (...,. )v'lO
A factor loading is obtained by

which is a projection of the data ,
axis. Projection of a vector onto ano

w = (ll . x)(x)

where: w is the projection of II on x
Ixl = 1

For the following example let axis
nates (1, 0). w is the projection oj
on x:

\Ii = [(3,3) . (1,0)] [(1, 0)] = (3, I

The length of w or the loading of II (

Iwl = )32 + 02 = 3

Thus, the loading of fi on x is 3,
Similarly:
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space. The vectors shown here share a common origin (0), but differ in
terms of length. The length of these vectors is given by the formula:

I'm = JXT + x~ ... + x~

where: I'm = length of vector 7i
Xi = coordinates in the vector space
n = dimension of the vector space

Thus, the length of vector Ii is:

IIiI = J32 + 32 = JT8
and the length of IT is:

IVI = J32 + 12 = JTO (3)

To standardize these vectors (transform to unit length) it is only neces-
sary to divide each vector by its own length such that

Ii' = ~(3, 3)

and

v' = _1_ (3 1)
JlO '

A factor loading is obtained by measuring the length of a vector
which is a projection of the data vector onto the frame of reference
axis. Projection of a vector onto another vector is given by the formula:

where: w is the projection of Ii on X-
Ixl = 1

For the following example let axis X ~e a vector (x) with the coordi-
nates (1, 0). w is the projection of u on x and z the projection of v
onx:

if. The length of w or the loading of Ii on x is:
"

Thus, the loading of u on x is 3, simply its length along the X axis.
Similarly:



Hence, before standardization the loadings of each vector on x are the
same.

Now turn to the loadings of the standardized versions of these vec-
tors on x. Let k be the projection of Ti' on x and / the projection of
v' onx:

K = [(Jrs, Jrs) \.(1, O)J [(1,0)) = (Jrs, 0)

Ikl = 0(~) 2 + 02 = _3
v'l8 JI8

Hence, the loading of the standardized version of u (u') on x is 3/..jT8.
The loading of / on x is

/ = [(Jro, ~). (1, O)J [(1,0)) =(Jro, 0)

[ABLE I

Separations in Space Among 16 Selected U.S. Cities a

Atlanta Boston Chicago Cleve- Dallas Denver Detroit Los
land Angeles

Atlanta 0
Boston
Chicago
Cleveland
Dallas
Denver
Detroit
Los Angeles
Miami
New Orleans
New York
Phoenix
Pittsburgh
San Francisco
Seattle
Washington

1508 944 891 1160 1950 869 2310

0 1369 886 2496 2846 986 4177

0 496
,

1292 1480 383 2807,
0 1649 1974 145 3297

0 1067 1607 200S
0 1860 1337

0 3191
0

1/1=0~r+ 02 = ]a
Hence the loading of the standardize
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numerical entry (Sij) may be though

New New York Phoenix PittsbuI
Orleans

682 1204 2562 838
2186 302 3701 777
1340 1147 2338 660
1487 652 2814 185
713 2211 1427 1721

1741 2624 943 2124
1511 1258 2719 330
2692 3944 574 3437

0 1076 1757 3189 1625
0 1884 2117 1478

0 3451 510
0 2941

0



e standardized versions of these vec-
1 of Ii' on x and T the projection of

III = VCAof + 02 = vA-o (14)

Hence the loading of the standardized version ofu (v') on x is 3/..;TO.
As can be seen from this simple exercise, whereas the projections of

vectors II and v are the same in the unstandardized case, the projec-
tions of vectors Ii' and v' are different in the standardized case. These
inconsistencies in the factor loadings due to standardization provide
problems in factor interpretation. Since the factor loadings obtained
from the unstandardized variables represent those loadings least con-
taminated by somewhat arbitrary mathematical manipulations, they are
to be preferred over the loadings obtained from standardized variables.
An example from some empirical data where the real factor structure
is very well known to most everyone provides a forceful underscoring
of this point.

Accordingly the data in Table I were assembled. These data represent
the distances among 16 major American cities. The data are formally
equivalent to an ordinary sociological data set; the columns may be
thought of as variables and the rows as cases or individuals. Each
numerical entry (sii) may be thought of as the score of the ith individ-

(l0)

loadings of each vector on Yare the

)] = (_3 0)
~'

)] =(_3 ,0)
v'lO

Cities a

0 Oeve- Dallas Denver Detroit Los New New York Phoenix Pittsburgh San Francisco Seattle Washington
land Angeles Orleans

891 1160 1950 869 2310 682 1204 2562 838 3447 3511 874
886 2496 2846 986 4177 2186 302 3701 777 4343 3979 632
496 1292 1480 383 2807 1340 1147 2338 660 2990 2795 961

0 1649 1974 145 3297 1487 652 2814 185 2485 3260 492
0 1067 1607 2005 713 2211 1427 1721 2366 2705 1907

0 1860 1337 1741 2624 943 2124 1524 1643 2404
0 3191 1511 1258 2719 330 3364 3118 637

0 2692 3944 574 3437 556 1543 3701
0 1076 1757 3189 1625 4174 4399 1485

0 1884 2117 1478 3099 3381 1554
0 3451 510 4137 3874 330

0 2941 1051 1792 3191
0 3643 3440 309

0 1091 3929
0 384'9

0

Icesmeasured in kilometers.



ual on the jth variable. While formally equivalent to a typical sociolog-
ical data set, however, the extreme precision and well-known configura-
tion underlying these data make them ideal for the present example.

The data were entered into the SPSS (Nie et aI., 1975) version 6.5
factor analysis program and factored by the principal components solu-
tion. This solution first centers the data on the mean of each variable
by subtracting the mean of each variable from each of its elements.
This matrix of deviation scores is then postmultiplied by its transpose
to yield a matrix of scalar products. This scalar products matrix is then
divided through by the sample size to obtain a variance-covariance ma-
trix. This variance-covariance matrix is then standardized by dividing
each cell by the product of the standard deviations of the variables
intersecting in that cell. The result is a correlation matrix, or more
appropriately, a matrix of cosines where each entry e ij represents the
cosine of the angle between the variable vectors 1and}. Since the angle
between T and J where T = Tis 0, and since cos 0 = I, the diagonal entries
of the matrix are unity. This matrix is then orthogonally decomposed
to yield a matrix of eigenvectors or factors by a standard eigenvector
routine. This solution is equivalent, in principal, to the previous exam-
ple which transformed the hypothetical vectors u and v to unit length
(eqns.4 and 5) and then projected them onto x (eqns. 11-14).

The standardized output resulting from this principal components
analysis is shown in Table II. Some factor analysts would consider this
solution two-dimensional since the third eigenvalue is less than unity.
However, we realize from our familiarity with these data.that there are
three dimensions underlying them, an east-west dimension, a north-
south dimension, and a third dimension resulting from the curvature of
the earth. If we attribute the 3.2 percent of the variance unaccounted
for by factors one, two, and three as error vartance [2], then it appears
that the standardized factor analysis has uncovered the major dimen-
sions underlying these data. Careful inspection of factor one would lead
one to identify an east-west attribute quite easily, but it is unlikely that
any standard interpretive scheme would lead unambiguously to a north-
south interpretation of factor two. Since the pattern of loadings on fac-
tor three is not common knowledge, we will not treat it here.

What has taken place here can be made evident by plotting factors
one and two as shown in Fig. 2 [3]. Figure 2 depicts a substantially dis-
torted map of the U.S. This distortion is wholly a consequence of the
standardization. Each city is constl"ained to be. located one standard
unit from the origin, and the result is a semi-circular U.S. with all but
one of the cities located on the east or west coast. The consequences
of this distortion are very severe, and one can readily notice the dim en-

Factor Loadings, Eigenvalues, and Percent Vari
Standardized Analysis

Atlanta
Boston
OJ.icago
Oeveland
Dallas
Denver
Detroit
Los Angeles
Miami
New Orleans
Ncw York
Phoenix
Pittsburgh
San Francisco
Seattle
Washington

Eigenvalue

Percent variance
explained

• Seattle
• San Francisco

0.8983
0.9593
0.8690
0.9538
0.1935

-0.6091
0.9235

-0.9192
0.8651
0.6689
0.9692

-0.8583
0.9726

-0.9664
-0.9140
0.9863

12.0578
75.4

0.3517
-0.1799
0.2714
0.0554
0.9550
0.6649
0.1226
0.3059
0.2394
0.6560

-0.1315
0.4572
0.0194
0.1505
0.0152

-0.0298

2.4337

15.2
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TABLE II

Factor Loadings, Eigenvalues, and Percent Variance Explained for the First Five Factors of the
Standardized Analysis

Cities Factors

One Two Three Four Five

Atlanta 0.8983 0.3517 -0.1253 0.1712 -0.0859
Boston 0.9593 -0.1799 0.1489 -0.0149 0.1334
Chicago 0.8690 0.2714 0.3833 -0.0049 -0.0999
Oeveland 0.9538 0.0554 0.2840 0.0362 -0.0342
Dallas 0.1935 0.9550 -0.1016 -0.1184 0.0454
Denver -0.6091 0.6649 0.3648 -0.1000 0.1268
Detroit 0.9235 0.1226 0.3316 0.0400 -0.1039
Los Angeles -0.9192 , 0.3059 0.0642 0.2308 -0.0094
Miami 0.8651 ' 0.2394 -0.4081 -0.0109 -0.0319
New Orleans 0.6689 0.6560 -0.3153 -0.0453 -0.0698
New York 0.9692 -0.1315 0.1153 0.0006 0.1441
Phoenix -0.8583 0.4572 0.0805 0.1364 0.1177
Pittsburgh 0.9726 0.0194 0.2166 0.0404 0.0043
San Francisco -0.9664 0.1505 0.1493 0.0856 -0.0382
Seattle -0.9140 0.0152 0.3274 -0.1362 -0.1640
Washington 0.9863 -0.0298 0.1160 0.0426 0.0700

Eigenvalue 12.0578 2.4337 0.9986 0.1600 0.1391

Percent variance 75.4 15.2 6.2 1.0 0.9
explained

--------------l--------------"T·~P~t~Sbhurgh
·Cleveland



sions even contain order inversions. Washington and Pittsburgh, for
example, are incorrectly portrayed as farther east than Boston and
New York. Miami is incorrectly portrayed as farther west than Cleve-
land, Detroit, Atlanta, and Chicago. Factor two, which should repre-
sent a north-south dimension, contains even greater distortion. The
most extreme distortion places Miami north of Chicago. In other
instances Washington is north of Seattle and Phoenix is north of
Denver.

Lest one believe that distorted as it may be, this factor analytic pic-
ture is still the best that might be hoped for, the same data were
entered in to a metric multidimensional scaling program, Galileo version
3.9 (Gilham and Woelfel, 1976; Woelfel, 1976). This program, like
SPSS version 6.5, first centers the data on the mean of the variables by
subtracting the mean of each variable from each of its elements. This
matrix of deviation scores is then postmultiplied by its transpose to
yield a matrix of scalar products. The scalar products matrix is then
divided through by the sample size to obtain a variance-covariance
matrix. However, instead of standardizing this matrix like the SPSS
program, the Galileo program factors this variance-covariance matrix.
Its output, therefore, may be interpreted directly as an unstandard-
ized factor analysis [4] and is similar, in principle, to the previous
example which measured the projection of the unstandardized vectors
Ii and v on x (eqns. 7 -10). The results of this unstandardized analysis
are shown in Table III.

Since the data are not standardized, each of the columns (factors)
represents the distance in kilometers of the cities' projections on the
factors from the origin of the space. Note that proportionately more of
the variance lies on the first three factors, with only 1.77 percent un-
accounted for by them. This is most likely a better representation of
the error in the data than the estimate froITJ the principal components
analysis. In addition, since the curvature of the earth should account
for only about 1 percent of the variance in these data, the estimate of
3.88 percent obtained by factor three is a truer estimate than the corre-
sponding 6.2 percent yielded by the standardized analysis. Hence, in
the category of variance explained, the unstandardized version presents
a slightly better description of these data than the standardized version.

The major difference, however, between these two techniques lies in
the pattern of loadings they yield. Figure 3 [5] presents the plot of fac-
tors one and two from the unstand3rdized version. It is clearly a nearly
perfect map of the U.S. cities. Little of the distortion due to standard-
ization can be found here. On factor one there is only one minor inver-
sion with Miami placed east of Pittsburgh. Actually, Pittsburgh is

TABLE III

Factor Loadings, Eigenvalues, and Percent Va
Unstandardized Analysis

Cities Factors

One Two

Atlanta -680.8 620.
Boston -1730.0 -753.
Chicago -413.4 -390.
Oeveland -909.6 -424.
Dallas 320.3 653.
Denver 1043.6 -124.
Detroit -760.0 -454.
Los Angeles 2257.1 535.
Miami -1374.2 1244.
New Orleans -339.9 927.
New York -1548.5 -457.
Phoenix 1747.1 500.
Pittsburgh -1073.7 -336.
SJn Francisco 2574.5 -156.
Seattle 2277.7 -1227.
Washington -1390.2 -156.

Eigenvalue 3.4 6.
X 107 X106

Percen t variance 78.6 15.
explained



. Washington and Pittsburgh, for
as farther east than Boston and

trayed as farther west than Cleve-
. Factor two, which should repre-
tains even greater distortion. The
iami north of Chicago. In other
Seattle and Phoenix is north of

it may be, this factor analytic pic-
~ hoped for, the same data were
nal scaling program, Galileo version
'oelfel, 1976). This program, like
ata on the mean of the variables by
)le from each of its elements. This
postmultiplied by its transpose to
fhe scalar products matrix is then
~ to obtain a variance-covariance
lrdizing this matrix like the SPSS
:s this variance-covariance matrix.
rpreted directly as an unstandard-
lilar, in principle, to the previocls
:tion of the unstandardized vectors
mlts of this unstandardized analysis

zed, each of the columns (factors)
rs of the cities' projections on the
Note that proportionately more of

;actors, with only 1.77 percent un-
1st likely a better representation of
ate from the principal components
vature of the earth should account
iance in these data, the estimate of
~eis a truer estimate than the corre-
le standardized analysis. Hence, in
the unstandardized version presents
data than the standardized version.
etween these two techniques lies in
igure 3 [5] presents the plot of fac-
lrdized version. It is clearly a nearly
~ of the distortion due to standard-
r one there is only one minor inver-
Pittsburgh. Actually, Pittsburgh is

707

TABLE III

Factor Loadings, Eigenvalues, and Percent Variance Explained for the First Five Factors of the
Unstandardized Analysis

Cities Factors

One Two Three Four Five

Atlanta -680.8 620.8 816.2 -2.6 -5.0
Boston -1730.0 -753.0 77.7 3.8 -158.4
Chicago -413.4 -390.0 -42.5 13.1 55.8
Oeveland -909.6 -424.6 -13.9 17.6 24.1
Dallas 320.3 653.5 -276.0 -1.8 -27.3
Denver 1043.6 -124.2 -167.7 1.8 108.3
Detroit -760.0 -454.7 27.2 497.8 -38.5
Los Angeles 2257.1 535.6 750.4 -31.9 8.9
Miami -1374.2

,
1244.1 -275.9 -10.3 -163.7,

New Orleans -339.9 927.7 -278.3 -8.0 -85.5
New York -1548.5 -457.7 14.8 -479.4 38.8
Phoenix 1747.1 500.3 -322.5 -12.9 21.1
Pittsburgh -1073.7 -336.8 -21.9 17.9 -1.1
San Francisco 2574.5 -156.5 -248.9 -11.1 139.8
S~attle 2277.7 -1227.8 -17.8 -63.4 -234.0
Washington -1390.2 -156.5 -21.0 69.4 316.7

Eigenvalue 3.4 6.8 1.7 4.9 2.5
X 107 X106 X 106 X105 X 105

Percent variance 78.6 15.8 3.9 1.1 0.6
explained

l' ••e\e~ .
• \..o!t ,.. • PhoeniX



aproximately 30 kilometers east of Miami. On factor two there are sev-
eral inversions, but they too are relatively small. The worst of these
inversions places San Francisco north of Denver. In reality Denver is
about 228 kilometers north of San Francisco.

The comparison between the standardized and unstandardized factor
analyses conducted here has revealed striking differences. While both
types of analysis yielded similar estimates of variance explained per fac-
tor, the unstandardized analysis provided an unquestionably better por-
trayal of the factor loadings. The major problem with the standardized
version was that it constrained the communalities of each variable to be
the same (unit length). As a result, the pattern of loadings was neces-
sarily semi-circular. The obvious implication from this is to avoid stan-
dardizing variables which are to be factor analyzed. However, a more
far-reaching implication emerges from these findings. As we noted pre-
viously, there are two critical requirements for factor analysis, a com-
mon origin for the vectors and knowledge of the vector lengths or com-
munalities. Our solution has been to factor a variance-covariance matrix
using the variance of each vector as its communality. However, variance
is largely a function of the unit of measurement chosen for a variable.
If one attempts to factor variables measured on different scales by
means of factor-analyzing a variance-covariance matrix, then one runs
the risk of biasing the outcome since the variables measured on the
larger scales will most likely have the larger vector lengths, and, conse-
quently, larger factor loadings. As we have shown, standardization is not
a legitimate method for circumventing this problem. The only solution
is to measure all variables on common scales. For example, in the case
of attitude measures, a researcher may employ all Likert items as the
measure of attitudes. However, for the case where the variables are not
measured on the same scale, the researcher cannot hope to achieve
mathematical miracles by standardizing hisl,her variables prior to factor
analysis.

One more point must be considered before concluding. This paper
has examined the factor analyzing of correlational matrices with unities
in the diagonals. A technique sometimes employed in factor analysis is
to remove the unities from the diagonal of the correlation matrix and
replace them with some other values. These replacement values are
quite arbitrary with two of the more common replacements being each
variable's highest correlation with any other variable in the matrix or
the squared multiple correlation of each variable with all other vari-
ables in the matrix (Harmon, 1960). This replacement technique does
not offer any improvement over the inadequate method of using the

I. unaltered correlation matrix. Replacing the diagonal elements has two

drawbacks. First, this replacemen1
mation of the data to the initial r
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further from the actual data repor
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3 '\'orth and south are inverted in Table
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4 The Galileo program was used because
ability. The user without access to a
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matrix.

5 Both the east-west and north-south c
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ing this problem. The only solution
10n scales. For example, in the case
may employ all Likert items as the
the case where the variables are not
researcher cannot hope to achieve
zing his/her variables prior to factor

ered before concluding. This paper
)f correlational matrices with unities
times employed in factor analysis is
gonal of the correlation matrix and
lues. These replacement values are
re common replacements being each
any other ,,:ariable in the matrix or
f each variable with all other vari-
I). This replacement technique does
he inadequate method of using the
.cing the diagonal elements has two

drawbacks. First, this replacement adds another non-linear transfor-
mation of the data to the initial non-linear transformation caused by
standardization. Hence, this data matrix is removed even one step
further from the actual data reported by the respondent. Second, the
factor solution obtained after replacing the diagonals is highly contin-
gent on the replacement values. Since the researcher typically does not
know the factor pattern underlying his/her data, there is no way of
being confident of the solution obtained.

The only instance where this would be a linear transformation is if all the stan-
dard deviations were the same'.'

2 This error would be due to measurement error and conversion from miles to
kilometers. Actually, 3.2 percent is probably a liberal estimate of the error con-
tained in these data. About 2 percent is the maximum we would expect.

3 North and south are inverted in Table II simply due to sign reversal. For exam-
ple, Dallas appears to be the most northerly of the sixteen cities. For aid in inter-
pretation, the signs on factor two were reversed before plotting.

4 The Galileo program was used because of its convenient format and ready avail-
ability. The user without access to a metric multidimensional scaling program
could obtain essentially identical results by factoring a variance-covariance
matrix.

5 Both the east-west and north-south dimensions in Table III are inverted due to
sign reversal. As was the case for the standardized version, for aid in interpreta-
tion, the signs on factors one and two were reversed.
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FOR A WEIGHTED INDEX OF
AGRE

The kappa (K) statistic developec
known in psychology for measurin.
(see Fleiss, 1973). In a typical apl
the same set of n objects using T u
If the resulting data are formalized
as that given in Table I, then in ten
defined by

K = (Po - Pe)/O - Pe)

T

Pe = 6 nu.iz.u/n2

u=l

is the expected proportion under tl
and fixed row and column marginal

Although the expression for P e J

chology, the field of sociology gen
sian suggested by Scott (955). ~
dorff (970), and others define

T

Pe = 6 (nu. + n.u)2/4n2
u=l


